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I. STATEMENT OF WORK

Conduct a theoretical research program to develop quantum
mechanical methods of studying nonadiabatic effects in three-dimensional

atom-diatom collisions.

IT. DESCRIPTION OF PROBLEM

Chemical dynamics has reached the stage of development that
allows the first-principles determination of detailed state-to-state

(M

information for many kinetic processes. These new experimental and
theoretical methods are beginning to provide information of significant
importance to military technology in such areas as chemical and excimer
laser development, studies of the interaction of modern weapons systems
with the atmosphere, the characterization of the radiation from rocket

)

plumes, and combustion and propellant research.(z’3 A11 of these areas
require rate data for specific quantum transitions as input to sophisticated

kinetic codes.
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In many instances, the transitions of interest are difficult
to investigate experimentally due to short lifetimes, 10W intensities,
competing processes, or simply economic factors. Theoretical approaches
can not only provide information of extreme utility to the experimentalist
as support for the interpretation of data, but in their own right can be the
most cost-effective means of obtaining such information.(4)
The goal of this research program is to develop new and more
efficient quantum scattering methods that will be useful in applications
to state-to-state collision processes involving two- and three-atom systems.
The emphasis is on nonadiabatic processes, particularly those that involve
| the transfer of electronic energy. This approach is based on the coupled-
channel method, and stresses reliable approximations that allow the study of
Tight, first-row molecular systems involving up to three atoms. An important
constituent of the present approach is the incorporation of
potential energy surfaces and couplings obtained from ab-initio quantum
chemistry. The suitable analytical representation of such surfaces is
an important component of this research.
The Born-Oppenheimer (BO) separation of electronic and nuclear
motion is a valuable tool in molecular theory since many low-energy
collision processes are often adequately described by considering motion
on a single potential energy surface. For inelastic collisions where
avoided crossings or small separations between electronic states occur,
and for reactions which involve the breaking of chemical bonds and
reorganization of spin couplings, the BO approximation can be & poor
one. In such cases it is necessary to consider the mixing of two or more

adiabatic electronic states that arise due to nuclear motion.
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Quantum chemistry is concerned with solution of the Schradinger

equation for electronic motion that results from app]icafion of the Born- ;
Oppenheimer approximation. The set of solutions (adiabatic) to the

electronic problem can be used as a basis for expanding the total wavefunctions
for nuclear motion. When the BO approximation is valid, the wavefunctions

for nuclear motion adequately describe molecular collisions on the appropriate

potential surface (neglecting spin effects).

These adiabatic electronic functions can often be strongly coupled

(5)

by operators neglected in the BO separation. For body-fixed coordinates
(BF), 1in which the electronic problem is conveniently solved, these operators
take the form of BO couplings for internal motion and coriolis couplings
resulting from tumbling of the BF axis. Spin-orbit interaction is normally
neglected in solving for the electronic eigenfunctions, but it must be
included with the nonadiabatic couplings for a proper treatment of the collision
problem. Other terms in the Breit-Pauli hamiltonian resulting from removing
the center-of-mass motion may be neglected in problems of chemical interest.
Since most quantum coupled-channel methods make use of partial-
wave expansions, studies of interacting open-shell species must explicitly
consider the various angular momentum couplings that occur. Several quantum
treatments of multiple-surface effects in F + H2 have done so. Miller and
Wyatt(s) and DeVries and George(7) utilize the valence bond character of

(8)

DIM theory in their formulations, while Rebentrost and Lester emplioy

SCF wavefunctions. Depending on the spin and angular momentum of the
collision partners, different coupling schemes are required. These studies
are the only ones reported for the interaction of a structured atom with a

]

molecule in a 't state. Extensions to open-shell molecules are necessary to

reach the ultimate goal of this project.




A11 three studies mentioned above employ diabatic representations

(5)

for solving the coupled equations. These are usua]]y'obtained by various
prescriptions from the adiabatic representation, and are not unique. They
can be obtained by a unitary transformation that globally eliminates certain
couplings. The advantage of diabatic representations is that one can
minimize or eliminate the large couplings due to nuclear motion and instead
employ a nondiagonal representation of the electronic hamiltonian. By
eliminating the first derivative term, the coupled equations can be
integrated using very efficient algorithms. Similar couplings appear for
vibrational and rotational motions in reaction coordinate formulations of
reactive scattering. Although the equations can be integrated with such
terms included, better stability is obtained if they are eliminated.(g)
Since ab initio adiabatic potential surfaces and their couplings are
employed in this approach, it is important that adequate methods be
' developed for integrating the appropriate coupled equations.

In summary, this research program attempts to bring together the
computational tools necessary to determine from first-principles, state-to-
state probabilities for quantum transitions involving rotational, vibrational,
and electronic degrees of freedom for atom-diatomic molecule collisions.

In Part III we highlight the principal objectives of this program, and in

Part IV we examine the goals achieved during the past 18 months. Part V

provides recommendations for further work.
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111, RESEARCH OBJECTIVES

The overall objectives of this research program are as follows:

o Extend the 3-D reaction coordinate theory of chemical i
reactions to include nonadiabatic electronic transitions.

e Investigate various decoupling approximations for ;
reducing the complexity of the coupled equations. E

e Develop systematic approaches for the analytical y
representation of ab initio potential-energy surfaces ;
and couplings. 1

¢ Develop efficient algorithms for the integration of :
coupled equations involving nonadiabatic couplings
between rotational, vibrational, and electronic states.

o Implement these methods into efficient scattering codes.

o Apply these codes to a variety of problems of current
interest.

IV, RESEARCH ACCOMPLISHMENTS

This research contract was originally funded as a 36-month effort,
but this was reduced to 18 months because the principal investigator left
Battelle. 1In spite of the short duration of this project, there have been
a number of accomplishments that will form the basis of a practical method
for studying electronic excitation in molecular collisions.

As a result of early work on this project, rate constants from
3-D reactive scattering calculations for F + H, and H + H2(V=1) are shown
to be in general agreement with experiment (see Appendix A). Recent

(10)

experiments on F + H, suggest the existence of a resonance predicted

earlier by our theoretical approach.(]]) Surface fitting procedures have

been developed for fitting ab initio potential energy surfaces (see




Appendix B). A variety of techniques for integrating coupled equations

were investigated, in part in collaboration with the NRCC workshop on
computational algorithms in scattering theory. These methods were applied
to a variety of vibrationally and rotationally nonadiabatic processes
(Appendix A) and to electronically nonadiabatic processes in K + H
collisions (Appendix C).

Specific accomplishments are as follows:

e Previously computed reaction probabilities for F + H2
were used to determine cross sections and rate constants
for this reaction. This is the first 3-D quantum
mechanical calculation of the rate of a chemical reaction
other than H + Hy. Arrhenius parameters from the
theoretical calculations are in reasonable agreement with
experiment. Perhaps the most important result is that
it is possible to compute probabilities at enough values
of euergy and total angular momentum to obtain total
state-to-state cross sections over the range of energies
required to compute a thermal rate. This is further
discussed in Appendix A.

o Quantal rate constants calculated at 300 K for H + H2(V=1)
agree with some experimental results and are in apparent
disagreement with classical mechanics. The potential
surface used in this study is not very reliable, but gives

rates for V=0 in good agreement with experiment and other

theoretical values (see Appendix A). This work is discussed

BTy
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in some detail in a recent review by Schatz. Again,
it is significant that these calculations are possible
with modest computing resources. The H + HZ(V=1)
calculations were done on a VAX minicomputer!

Methods have been developed, based on the many-body
approach of Murrell, to obtain analytical representa- ]
tions of three- and four-atom potential energy surfaces.
To date applications have been made to 0(10) + H2(72+), i

g
c(3p) + 02(32;), 0(3p) + H,0 and 0oC3p) + €0,. Quartic i

force fields for H20 and CO2 are accurately reproduced
with this technigue (see Appendix B).

Codes for generating 3-D electronic correlation diagrams
in reaction coordinates, including rotational-vibrational
degrees of freedom, have now been developed. These are
general codes capable of treating one potential surface
at a time and are not restricted to linear reaction
intermediates. An analytical representation of the
potential surfaces for each electronic state is required
input. Systems studied so far are F + H,, T H2,
0(3p) + Hy, and 0('D) + H,.

3-D translational wavefunctions have been obtained for

F + Hz, along with density and flux maps. The 3-D flux

maps show whirlpool structure similar to the F + Ho

collinear reaction previously studied. This will be




(13)

presented in a forthcoming paper. This is an unusual

method of interpreting scattering calculations and should
lead to an increased understanding of molecular reaction

mechanisms.

An integral equation method developed previous]y(14)
has been tested against some of the more modern
a]gorithms(15’16), and in many instances is seen to

be competitive. This algorithm is expected to be

particularly useful in applications to energy-dependent
potentials such as occur in reactive scattering problems.
Several scattering codes incorporating electronic coupling,
using different integrators, have been written and tested.

Two of the integrators use accurate and reliable finite-
difference methods. The others use more efficient
potential~following techniques. The finite difference

codes can be used to test the accuracy of the potential-
following codes during preliminary studies on new systems.
Adiabatic potential energy curves and nonadiabatic first-
derivative couplings for the X, A, and C1z+ states of KH

have been obtained by an ab initio pseudopotential method.(]7)
The important splitting between the X and A curves is in

good agreement with experiment. These curves and couplings

are useful for dynamical studies on this system (see

Appendix C).
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e The ab initio potentials were used to calculate

electronically inelastic transition probabilities

and cross sections for Tow-energy K + H collisions.

The 42P > 425 guenching cross section varies between
2 x 1074 ag and 10 x ]0'4 ag between .022 eV and

1.10 eV relative translational energy. This study

is a prelude to the study of K + H2'

The ultimate goal of this program, namely, the treatment
of electronic transitions in a 3-D atom-diatomic molecule reaction,
was not realized due to time constraints. The manner in which the
present study can be extended to this process is discussed in the

next section.

V. RECOMMENDATIONS FOR FURTHER WORK

Progress to date has been made in (1) developing efficient
computational tools for integrating coupled equations, (2) studying
3-D chemical reactions on single, adiabatic potential energy surfaces,
and (3) developing a formalism for including electronic transitions in
atomic collisions. The following recommendations should receive serious

consideration to fully utilize the effort expended on this project. ?

e Perform reactive scattering calculations for 0(3P) + H,.
Ab initio potential surfaces exist for this system, as
do classical trajectory results and experimental results,
This will provide yet another reaction for which 3-D quantum
results are available. This was scheduled for the current

project, and all necessary codes are in hand. 5
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¢ Incorporate electronic degrees of freedom into existing

scattering codes. This was started during this project,
and the 3-D reactive code has been partly generalized.
This is a straightforward extension of methods currently

in hand, at least for singlet diatomic fragments.

o Develop strategies for treating arbitrary electronic

angular momen* m in a total angular momentum representation.

¢ Investigate necessary decoupling approximations suitable

for studying vibronic transitions.

e Perform electronically nonadiabatic nonreactive calculations

on Na + H2 or K + H2° This will test the machinery necessary

for the reactive problem.

e Perform electronically nonadiabatic reactive calculations

on Na + Hy or K + HZ' These reactions are endothermic by
about 2.3 eV and 2.7 eV, respectively, and will require a
large number of channels. Reliable approximations make

these pruhlems tractable on existing machines.
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Recent Results from Three-Dimensional
Quantum Reactive Scattering Theory

MICHAEL J. REDMON

Chemical Physics Group, Bantelle-Columbus Laboratories. Columbus. Ohio 43201,
US.A

Abstract

Results from recent three-dimensional natural coordinate reactive scattering calculauions are
presented. Extensions of the scattering method of Wyatt to systems with nonfinear intermediates
are discussed. Rate constants for the reaction H + Hx (¢ = 1) at 300 K are presented and compared
with classical trajectory calculations and with experiment. The quantum results are in reasonable
agreement with experiment, but the classical results greatly underesimate the reaction ratz. Totai
cross sections and relative rate constants are presented for the F + H. (¢ = 0) reaction and compared
with classical results and experiment. Total cross sections for the H + O: reaction are presented
that demonstrate the enhancement of reaction caused by reagent vibrational energy

1. Introduction

There has been considerable progress in the development of quantum me-
chanical methods for obtaining state-10-state cross sections and rate constants
for simple chemical reactions. Beginning with the early work on the H + H-
reaction [1-4], the computational technology has continuously developed so
that converged close-coupled results now exist for this system {S-7]. Recently.
a calculation has been reported [7] on an accurate fit {8] to the definitive Liu-
Siegbahn surface {9]. It should now be possible to obtain accurate ab initio
dynamical information for H + H- and its isotopes for comparison with exper-
iment.

Progress has also been made in developing methods based on close-coupling
techniques for treating 3-D (three-dimensional) systems other than H + H;
[10-12]. Extensions to reactions involving heavier atoms are difficult due to
asymmetries in the reaction coordinates and to the enormous increase in the
number of coupled channels necessary for convergence of the computed
probabilities. The large number of channels accessible at thermal collision
energies requires the use of centrifugal decoupling approximations for total
angular momentum J > 0. These can be so-called J.-conserving approximations
[13]. in which the number of channels used in expanding the wavefunction is
approximately the same as for J = 0, or centrifugal sudden approximations [14].
in which the orientation of the system is frozen during a collision. resulting in
an enormous reduction in the number of coupled equations. Both of these ap-
proximations are adequate for total reaction cross sections for H + H.. and the
J.-conserving approximation reproduces accurate close-coupling results for

tnternational Journal of Quantum Chemistry Quantum Chemistry Symposium 12, $50- 568 (1979
£ 1979 by John Wiies & Sons. Inc 0loi-3642 79 00130853801 A0
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individual rotational transitions to 7% [10]. It has so far not been possible to test
these approximations for heavier systems by comparison with close-coupling
calculations. It is felt that the J.-conserving approximation should be reliable
for other reactions with linear intermediates.

In this article we present a review of some recent results of 3-D reactive
scattering calculations for F + H-, H + H>. and H + O, These calculations used
Wyatt’s formulation of the 3-D quantum scattering problem [15] with the
natural collision coordinates (NCC) of Marcus [16]. The calculations emploved
the code REACTOR, written by the author while at the University of Texas
at Austin, and which was used in the previous calculations reported for F + H-
{10-12]. The latest version incorporates modifications necessary for treating
reactions with a nonlinear intermediate. such as H + O, and also uses the R-
matrix propagation method [17]. These extensions are examined. although
computational details are not presented here. The approximations emploved
are discussed insofar as they might be expected to affect the reported results.
A recent review has been given by Wyatt [18].

In Sec. 2 we discuss some improvements in the NCC approach. In Sec. 3 we
present results for several systems. including rate constants for the F + Ha re-
action. and make comparisons with experiment and classical trajectory calcu-
lations. We also compare our calculations of reaction rates for vibrationally hot
H + H. with some new experiments and with classical mechanics. Finalls, we
discuss new applications of the method to the H + O reaction.

2. Recent Developments in NCC Reactive Scattering Methodology
A. More Schizophrenia in Reaction Coordinates

The unique feature of Marcus’ natural collision coordinates {16] is that the
translation. vibration, and rotation coordinates (s. p. y) all vary smoothly from
a set appropriate for describing the relative motion of an atom C colliding with
a diatomic molecule .45 to a set appropriate for describing the relative motion
of atoms 4 or B with the molecules BC or AC. This is accomplished in the fol-
lowing way. The body-fixed (x, X) = (0. 0) plane is chosen as the instantaneous
plane of the three atoms. with collinear motion defined in the (=, Z) plane. De-
viations from collinear motion require excursions of the system into the (1. }')
plane. and are defined by the quantity m 2 0 with magnitude (3> + }'3)! 2 As
discussed by Marcus [16]. keeping m positive avoids one source of double
counting of configurations. The smooth transformation between reactant and
product coordinates is obtained by requiring a local Cartesian constraint

ysina(s) + Y cosa(s) =0 (H

at each point along the reference curve defined by the translational coordinate
5. afs) s an arbitrary switching angle [16] that varies smoothly between zero
for reactant configurations and £.. (skew angle of the mass-weighted coordinates)
for product configurations. The - axis points initially to the reagent atom. and
switches smoothly so that it points to the product atom after the collision.
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Rather than use the coordinate m. it is more convenient to discuss the motion
by using the local radial and bending coordinates (r. ). to which m is related
by the expression

m = rsiny: (2)

where 7 is measured (in a constant s plane) from the = axis and 4 is referenced
to the collinear plane. This is useful in writing the Hamiltonian for the system
since vy becomes a convenient coordinate for representing internal rotational
motion. A problem that arises, which was not discussed by Marcus. is that there
are values of ¥ (near 7/2) for which the coordinates become multiply valued
whenever the switching angle a(s) is not exactly equal to one of its asymptotic
values. This is a direct consequence of the constraint expressed by Eq. (1). This
situation is illustrated in Figure 1. where the hatched area for ¥ > 5, represents
the region in which configurations are identical 1o some for 4 < v, Configu-
rations for ¥ = v, correspond to isosceles triangle geometries. and when s =
Oand @ = Y5 £a. ¥, = 45°, which corresponds to equilateral triangle configu-
rations for H; and Ha*.

This characteristic of NCC was not noted in early applications [6. 10. 11]
because the bending potential was parametrized and fit to small deviations from
linearity (small ¥). [t was observed by this author during attempts to accurately
represent the F + Ha surface in NCC. 1t becomes particularly important for
svstems with stable nonlinear intermediates such as H:* and HO-. In fact. for
H* + H.. the most stable configuration follows the curve v = v, in Figure 2,
corresponding to C»,. configurations. It seems necessary to replace Eq. (2)
with

m = rsin 67. ()

with the scale factor 8(s) defined so that 6y = v, for v = 7/2. This introduces

m
CONSTANT S
PLANE
-~
Y F P
i
¢

Figure I. A constant s plane showing the multivalued region for ¥ > v that must be avoided
in doing scattering calculations. When the switching angle equals an asymptotic value. 3 »
= '/: L4
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Figure 2. A comparison of the variation of the switching angle a(s) with reaction coordinate.
and the corresponding value of ¥, which defines isosceles triangle geometries for the
three-atom system

additional complications into an already formidable kinetic energy operator [13].
but some procedure for maintaiming ¥ < 4 ,, is necessary for accurate compu-
tations in NCC. It should be pointed out that this schizoid region is different from
the one associated with three-atom dissociation regions of NCC [19]. which are
effectively handled for low-energyv collisions by using a circular arc to define
the reference curve, and choosing an appropriate turning center.

B. Extensions to Systems with Noncollinear Reaction Paths

NCC theory was originally formulated with applications to H + Ha: in mind.
Since for this reaction the minimum energy path is collinear. terms in the Kinetic
energy that are small except for large deviations from collinearity were dropped.
and others were approximated by evaluating them on the reaction path {6, 15].
This near-linear intermediate approximation has been used in all \NCC calcu-
lations reported so far. We have recently added the additional terms that con-
tribute for / = 0 and now neglect only those that are zero within the J.-con-
serving approximation. Elkowitz has suggested that the inertia coefficients can
be evajuated on the noncollinear reaction path. in the spirit of the linear inter-
mediate approximation {20}. He has shown that the Hamiltonian then reduces
exactly to the one used previously [13] when the reaction path s collinear. We
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have chosen instead to accurately compute the matrix elements over the vibra- y 3
tional motion, which can be large. but to set 4 equal 10 v,. its local value on the b
reaction path, to approximate some of the integrals over the bending coordinate.
This leads to a considerable simplification in matrix element computation. and
seems reasonable since we are looking toward developing useful decoupling
procedures. and not exact close coupling. The new methods of evaluating matnx
elements were used for the H + O- calculations discussed in this article.

3. Selected Resuits for Three Representative Reactions

In this section we present some recent results for the H + H.. F + H.. and
H + O- reactions. These systems are useful for demonstrating the range of ap-
plicability of the method. as F + Ha is highly exoergic. while H + O: is endoergic
and has a stable nonlinear intermediate with a 2-eV well. The goal of our current
effort is to develop techniques for determining total state-to-state cross sections
and rate constants for atom-diatomic molecule reactions involving relativels
light atoms.

A. Rate Constants for the H + H~ Reaction

In their work on this reaction. Schatz and Kupperman [5] computed rate
constants for the Porter-Karplus surface and found good agreement with
classical mechanics at 600 K. However, at 300 K there were significant differ-
ences between the quantum and classical results. It is of interest to compare
quantum and classical calculations on a surface with the correct barrier height.
and for vibrationally excited reagents, since reactions of vibrationaily hot hy-
drogen are of current astrophvsical interest. We have chosen the Yates-Lester
surface [21], and computed distinguishable atom rate constants for the processes
H+H;(t=0.j=00—H+H-(r=0.Z)%andH+H-(r=1.j=0—H
+ H; (¢ =0, Zj'). The results are summarized in Table !. We find. as did Schaiz,
that the classical rates at 300 K are significantly lower than the quantum results.
For the ground-state reaction, this is presumably due to tunneling. For vibra-
tionally excited hydrogen, tunneling is probably less important. and the enhanced
rate is the result of interference effects among the various reactive and non-
reactive pathways that suddenly become assessable near a threshold.

We find that the cooling rate for Hy (¢ = 1) is slightly larger for the non-
reactive pathway than for the reactive pathway. as predicted from J = 0
probabilities [18]. This is in contradiction to the assumptions made by Heidner
and Kasper in analyzing their experiments [22]. where the nonreaciive contri-
bution to the cooling was assumed negligible.

In comparison with recent hydrogen maser experiments [23]. we find that
our overall rates are generally in much better agreement with experiment than
classical results on the Yates-Lester surface (at 300 K). although we are perhaps
underestimating the contribution due to the resonant exchange process H + H-
(t=1)—=H+H:(=1). Weare currently examining the possibility that the
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TaBLE | Rute constants® for the H + Ha reaction at 300 k

classical? quantum® experiment
kSt -- 1.3 1 108 €.2 x 128
d ]
1.2 %10
Py 5.1 x 190 (321018 955 x 102
' .
iy (2.4 x 15' 8.2 x 10'? .-
13 e 1
K - 1ox0'd 1.8 x 10
K 3.6 110" 2.6 x 102 --
* Umts are em? sec™ moie™" . Values in parenthests are estimates.

** A, refers to reaction from Hs (e = 0.5 = 0y 1o all final states. &, refers to reaction from H:
iy =0)wHie =0, 550

2 Ciassical results on the Yates- Lester surtace from L. W M Smith. Chem Phys. Lett. 47,219
(1977

5 3-D quantum results for the Yates- Lester surface. this work

W Schultzand D. J LeRoy, J. Chem. Phys 42, 3869 11963)

¢ Reference 22,

¢ Reference 22.
linear intermediate approximation might lead to underestimation of the
probabilities for this process.* It should be noted that these rates are computed
from distinguishable atom cross sections for comparison with classical me-
chanics. and are for reagent H in its lowest rotational state. Our conclusion is
that the use of classical mechanics for this system is justified only for trunsla-
tional temperatures well above 300 K.

B. Quantum Effects in the Three-Dimensional F + Ha Reaction

This reaction was the first one studied bevond H + H- by a full 3-D quantum
mechanical method {10. 11]. One of the important reasons for studving this
system was to see to what extent the very significant differences between
quantum and classical collinear calculations {24] might be modified in three
dimensions. The original 3-D quantum calculation was restricted to total angular
momentum J = 0, but it showed that the Feshbach resonance mechanism that
dominates the low-energy collinear reaction probability [25] for the process F
+ H, (¢t =0) — H + HF (¢’ = 2) persists in three dimensions. It was later
demonstrated by summing over J to obtain a total cross section for this process
that the quantum cross section had a distinct maximum just above threshold.
while the classical result continued to grow [12].

Our current quantum scattering codes are efficient enough to allow compu-
tations in which the potential parameters of the surface are varied. This allows
us to examine the sensitivity of the dynamics to various features of a potential

* The author wishes to thank J M Bowman for useful discussions of this point
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surface. This approach can be used to aid those doing ab initio calculations of
potential energy surfaces in selecting those regions of a surface that require
significant effort. This has been donc successfully for the collinear F + Ha re-
action {23, 26]. We are presently performing 3-D calculations for F + H- with
a variety of bending potentials and present in Figure 3 cross sections for a fit to
the famous surface S of Muckerman (27]. This differs from the potential used
previousiy {10. 11] in that this fit gives a better description of the local rotor
eigenvalue spectrum. The previous potential allowed for less hindered rotational
motion near the saddle point than the one used here. and produced reaction cross
sections about 30% larger near the threshold. Results for all of the potentials
we have used are similar. and all show a maximum in the r = 0 — 2 cross section.
As Figure 3 shows, this produces a leveling off in the total reaction cross section
that is not vbserved in the classical result f12] This is direct evidence that a
quantum mechanical resonance mechanism results in an energy dependence
in the reaction cross section that is not reproduced by classical mechanics. which
should be experimentally verifiable.

We have calculated state-to-state rate constants, and present them in Table
I1. along with classical and experimental results where possible. We find that
67% of the availuble energy ends up as product vibration. in excellent agreement
with experiment and classical mechanics. The ratio of rate constants ky k= is
also in good agreement. but the ratio k:/ k- is not. We find a significant amount
of flux ends up in ' = O excitation and is significantly affected by variations in
the bending potenual, as is 10 a lesser extent ¢* = 2. Classical mechanics produces
no reaction into ¢’ = 0. and collinear quantum calculations show less reaction
into this state than 3-D calculations. Modifications 10 the bending potential cun
introduce wells in the r = 0 and v = | correlation diagrams and affect the amount
of reaction into those states. just as modifications in the vibrational leveis
themselves can drastically affect collinear probabifities [23]. This sensitivity
to features of the bending potential should ultimately lead to refinements in our
knowledge about this system.

30 \ 1
mag'. Xﬂ“
*%
£
1
Ak
-2

Figure 3 Cross sections for the reaction F+ Ha (e =0,y =0y~ H + HF (", £, Thewal
reqction cross section is shown and compared with the classical result of ref 2>
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TABLE |l. Comparison of theoretical and experimental results for the 3-D F + H: reaction

classical quan:ur° experiment
E,/kcal mot” 1.9372 1.ss .6°
log A/cmd 7 mo1’ 13.22 13,62 14.2°
f, .6e5? & g9
ragneg P
Ky Py 4302°K
v =0 s 57 -
vioe ) .22 .28 .3
Vo2 V.00 H» 1,30
Vo= 3 .26 °3 a7
t.e,*
Ty /gy (Epey = 2 84,
v = 3 . ot} .-
vioe o3 26 .-
vio= 2 1.0 LR --
v' o® 3 ¥ a7 .-

a Classical results of J C. Polanvi and J L. Schretoer. Faraday Discuss. Cnem. Soc. 62, 267
(1977); T and ; selected from a 300-K Boltzmann distribution

8 This work. Quantum calculations for Hx (1 = 0.7 = G1, HF (Zc'. 2y 4 thus log A should be
underestimated.

¢K.H. Homanneral Ber Bunsenges. Phys Chem T4, Sx5(1970).

4 J.C. Polanyiand K B. Woodall, J Chem. Phys 87,1574 (1972)

¢ Classical cross sections of ref. 2R

f Quantum cross sections. this work and ref. 12,

C. A Quanium Mechanical Studyv of the H + O» Reaction

We have applied the nonlinear intermediate version of REACTOR tothe H
+ Os reaction, using a LEPS surface of Gauss with an angle-decpendent Sato
parameter [29]. This reaction is of practical interest because it is an important
chain propagation step in many combustion systems and difficult to study ex-
perimentally. Thus, a detailed theoretical investigation of the kinetics of this
system is warranted.

From a theoretical viewpaint. this reaction presents many new features. It
is endothermic by about ' eV and has a metastable intermediate with a 2-eV
well. The integration of classical trajectories for this svstem is complicated by
the occurrence of many long-lived complexes which often lead to trajectories
that cannot be back-integrated [29]. The quantum calculations are made dif-
ficult by the existence of so many open channels.

In Table 11 we present total cross sections for formation of OH (¢ = 0) from
various vibrational states of O The calculations are not fullv converged due
to core limitations on the CDC 7600 (we were limited to about 70 channels).
We are presently using 2 VAX 11/780 where core size is not a limitation and
hope to converge the J.-conserving calculations for this svstem.

The dependence of reaction cross section on reagent vibrational energy follows
the trends expected for an endoergic svstem from the work of Polanvi and co-
workers. This trend was also noted by Gauss for this system. The classical cal-
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TaBLE {11. Cross sections at I-eV total energy for the process H + O, (¢ = 0, =0) — O + OH
(c'=0.Z).

v €0 (V) :vc’zg‘
3 .303 6

1 m .26

2 .s22 32
3 .338 a7
¢ 159 3

culations showed no tendency of O: (¢ = 0) 1o react, vet the quantum results
indicate that 1t should. Gauss essentially found no reaction below - = 4. We find
the cross sections are small for ¢ < 3. but are considerably larger than the clas-
sical result. Gauss estimates that his ¢ = 4 cross section could be low by as much
as a factor of 10. due 1o the inability of his integrator to follow many compler
trajectories. We are presently tryving to estimate the error in our result due to
the limited basis set emploved.

We find that nonreactive collisions tend to produce vibrationally excited O,
which in turn can react rapidly with hydrogen. A detailed study of this syvstem
would probabiy produce many new results and add considerably 1o our know -
edge of elementary combustion processes.
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Evidence for a quantum resonance in the three-dimensional F + Hy (v =0,/ = 0) - FH(v' = 2, all /') + H reaction is pre-
sented. Relative to the collinear reaction, this resonance is much broader and is shifted by about 0.] eV to higher energies.
This resonance has not been predicted in previous quasiclassical trajectory computations, or in approximate quantum cal-

culations.

1. Introduction

The F + H, chemical reaction has been the subject
of extensive experimental [1] and theoretical study
[2], at least in part because of its dominant role in
powerful F5/H, chemical lasers. On the theoretical
side, the reaction has been attacked from the view-
points of classical, semiclassical, and quantum dynam-
ics. Prior quantum studies consist of exact collinear
computations on several different potential surfaces
[2] and approximate (Born [3] and distorted-wave
[4]) three-dimensional treatments, In addition, we
have reported preliminary quantum results on the 3D
reaction which are based upon numerical integration
of large systems of quantum close-coupled equations
[5}.

In this study, the energy dependence of reaction
probabilities and cross sections for the reactions F +
H,(v=0,/=0)—> FH(v', alij"} + H are reported over
the total energy range 0.32 € E,,, € 0.50 eV (E yane
= E o — 0.27 eV). Evidence is presented for a broad

* This research was supported in part by the National Science
Foundation, the Robert A. Welch Foundation, and Battelle
Memorial Institute.

resonance ir. the v = 0 ~ v’ = 2 cross section, with a
peak in the cross section just below 0.4 eV. Resonance
structure of this type has not been predicted in either
quasiclassical trajectory calculations or in approximate
quantal calculations [3,4]. However, the magnitude of
the cross section and the energy region where the reso-
nance occurs suggest that further crossed molecular
beam experiments would be extremely interesting in
testing these predictions. A brief survey of the scat-
tering methodology is presented in section 2. New re-
sults on reaction probability surfaces and cross sec-
tions are then presented in sections 3 and 4, respec-
tively.

2. Scattering theory

The scattering wavefunction at total angular momen-
tum J is expanded in products of adiabatic hindered
asymmetric top wavefunctions [2,6], QI.{M (Boxy:s),
times local Morse oscillator functions, A,(p:s)

=g -1/2 J
Yuyig o @XM = 712 LT 1)

X M Boxy: )H,(0:5) , ()




where {6, ¢, x } are Euler angles used to orient the top,
and {5, p, v} are natural translation—vibration—-bending
coordinates [2,6]. Also 9 is a metric coefficient which
is used to scale the wavefunction in order to simplify
the structure of the close-coupling equations for the
translational wavefunctions. 7';)'0/ 1ot (5)- In the com-
putational results reported here, 60 rovibrational chan-
nels were employed, with the distribution/12/12/12/
8/6/2/2/212/2/, where the total number of even j plus
odd j rotational functions in each of the ten lowest vi-
brational levels is indicated. At the highest energy stud-
ied here, six of these vibrational levels are asymptoti-
cally closed in products.

For all computations with / > 0. the J. conserving
approximation [7] was employed to restrict the num-
ber of orbital angular momentum (/) values in eq. (1)
to a single “dominant™ tetm for each value of j and J.
The same algorithm for selecting /(/, J) was success-
fully employed in earlier H + H; reactive scattering
calculations [7]. In that case, cross sections within
about 7% of the accurate values were generated with
the J. conserving approximation.

¥ The close-coupled equations for the translational
wavefunctions were numerically integrated with the
boundary value R-matrix propagation method {8].
Elements of the S-matrix were then directly generated
from the arrangement channel R-matrices. Reaction
probabilities for F + Hy(v =0,/ =0) - FH(v', all /) +
H reactive collisions are defined by

{open)  J+f'
=~ 2 -
%’u'(E) IE;O I'=§-}'i I‘S\(;O.l—'u'/'l'(E)I &)

and were computed for total energies in the range 0.32
eV E£<0.50 eV, and for 0 < J < 26 (in ranges of J
for which Péu. was slowly varying, computations were
performed at every other J value).

In these scattering calculations, we have used a va-
riety of potential surfaces, all based in part on surface
5 (M5) of Muckerman [9] *. The different surfaces
share the collinear surface of M3, but they differ in
the range and degree of angular anisotropy of the bend-
ing potentials. The bending potentials all have the same
functional form, Vy.nq(7,5) = % Vo(s) (1 = cos 2v),
but differ in the position along the reaction coordinate

* See ref. [10] for MS parameters. For early classical results
on predecessors of the MS surface see ref. [11].
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(determined by s5) of maximum hindrance 1o rotation.
The surface used for the results reported here is simi-
lar to the M5 surrace for small deviations from colli-
nearity in the transition state region. On the approach
or departure from the transition state, the bending po-
tential is similar to the one employed in recent trajec-
tory studies [12].

3. Reaction probability surfaces

In fig. Ia we nresent sections through the reaction
probability surface for producing HF(v' = 2). For each
value of the total angular momentum /. the vaniation
of probability with energy is qualitatively similar 1o
that obtained trom a collinear calculation on the M3
surface {10,13) **_ As F increases. there is a rapid in-
crease and then decrease in the probability, followed
by a fairly constant value at higher energies. One strik-
ing effect in fig. 1a is the J-dependence of the curves
at different constant energy sections. At the position
of the J = 0 resonance maximum and below, the curves
decrease monotonically with J, whereas at higher ener-
gies the curves are initially fairly constant with J. but
re-tune onto higher resonance values at a value of J
that increases with energy. The locus of these maxima
in the £~ J plane follows the “‘resonance ridge™ that
begins for J = 0 at the maximum in the probability
curve, and progressively moves to higher J with in-
creasing energy. The maximum probability on the ridge
gradually decreases as £ and J increase. The Pé, curves
for the 3D reaction are broader than the collinear re-
sult {10,13,14] due to the participation of many
(twelve in these calculations) rotor states in the reso-
nance mechanism, and to changes in the shape of the
vibrational—rotation adiabatic energy correlation curves
with increasing values of J.

In our earlier collinear calculations on this reaction
[13], we have identified the resonance mechanism in
the 0 = 2 process. It arises from internal excitation
and then de-excitation of the FHH intermediate in the ‘
beginning of the FH + H exit valley into primarily the
v = 3 and 4 states (which may be approximately iden-
tified as asymmetric stretch states) of the vibrational
energy correlation curves. Qualitative simijarity be.
tween the collinear and 3D results (at each J) suggests

** For extensive bibliographies see refs. {13.14].
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Fig. 1. Reaction probability surface for F + Ha(v =0,/ =0)
—~H + HF (v =2,/ = all). (b) Reaction probability surface
for F+ Hy(v=0,j=0)—~H+HF (' = 3,/ = all). Transia-
tional energy = total energy — 0.27 eV.

that the same mechanism is operating in the 3D colli-
sions.

It is known from other work that variations in the
collinear surface in the saddle-point and downhill re-
gions [13] and variations of the overall exothermicity
and product vibrational spacing [14] drastically affect
computed reaction probabilities, by shifting or elimi-

nating resonances or by creating new ones. The effects
we observe by varying the bending potential are not
nearly as severe as those resulting from changes in the
collinear surface, and mainly serve to alter the magni-
tudes of the resonance probabilities and the values of
J that contribute most to the integral cross sections.

4. Reaction cross sections

In fig. 2 we present the energy dependence of cross
sections for reaction of ground state H, to form HF.
Also shown is a classical total cross section on a slight-
ly different potential surface [12]. There is good agree-
ment below the resonance maximum, but above that
energy the quantal and classical results differ substan-
tially. The classical result continues to rise, while the
quantum total cross section levels off, due to the reso-
nance in the 0 = 2 cross section. In earlier collinear
studies [10], the classical total reaction probability
was also found to exceed (by about a factor of two)
the quantum result, between the classical threshold at
0.29 eV and the energy region where the 0 — 3 reac-
tion probability begins to grow (0.4 eV). However, the
0 — 2 resonance width in fig. 2 is much broader than
in the collinear calculations (where the width is about

1] ——

2

Qg oy tag)

o

= T = —T
< l1s <l o

Cicy

Tota Ererg. e
Fig. 2. Cross sections for forming vibrationally excited HF.

for all open HF vibrational manifolds. The classical result is
from ref. [12].
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0.01 eV). The broadening mechanism in the 3D case
arises both from the participation of many rotor states,
and the detailed angular momentum dependence of
the “resonance ridge™ in fig. la. In our studies on other
potential surfaces with different bonding potentials.
the 0 — 2 cross section above 0.40 eV never showed
smooth growth that could be extrapolated from the
lower energy region. as in the classical 3D calculations
[9—12]}. The quantum O — 2 cross sections for differ-
ent bending potentials ranged trom about 3.0 to 5.5

a('; at 0.50 eV and thus showed either a definite level-
ing-oft or a slight decline. relative to the values near
0.40 eV. The peak 0 — 2 cross section near 0.40 eV
ranged from 4 to 6 aé. except for one model bending
potential which maximized the angular anisotropy near
the beginning ofﬁthe exit valley, where the peuak cross
section was 11a3.

Further analvsis of these cross sections indicates
that 677 of the available energy appears as product
vibration at the 0 = 2 resonance maximum (0.4 eV).
in agreement with both experiment [1,15] and trajec-
tory calculations [9—11] in the low energyv region.

5. Conclusions

These quantum scattering calculations of reaction
probabilities and cross sections for the three-dimen-
sional low energy electronically adiabatic F + H, reac-
tion have demonstrated resonance structure for the
v=0—v' =2 process which is much broader and at
0.1 eV higher energy than the collinear resonance, and
which is not predicted by quasiclassical trajectory cal-
culations. Contribution of this resonance to the shape
of the total cross section has not been shown experi-
mentally. The extension of previous crossed molecular

CHEMICAL PHYSICS LETTERS 15 Mauy 1979

beam studies (on the F + D reaction [16]1m the reso-
nance energy region between £, =0.05eV 1o £ =4).23
eV could test these predictions. Resonance structure i
this reaction should be more amenable to experimen-
tal study than the vibrational resonance predicted for
the H + H, reaction [17].
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ABSTRACT

The accurate ab initio MBPT quartic force field of Bartlett,
Shavitt and Purvis has been fit to an analytical function using a method
developed by Sorbie and Murrell (SM). An analysis of this surface indicates
that it describes most properties of the H:O molecule very accurately,
including an exact fit to the MBPT force field, and very close to the correct
energy difference between linear and equilibrium HZO. The surface also re-
oroduces the correct diatomic potentials in all dissociati.e regions, but
some aspects of it in the "near asymptotic" 0(!D) + Hz region are not quan-
titatively described. For example, the potential seems to be toc attractive
at long range for O + H2 encounters, although it does have the correct minimum
energy path geometry and correctly exhibits no barrier to 0 atom insertion.
Comparisons of this surface with one previously developed by SM indicates
generally good agreement between the two, especially after some of the SM
parameters were corrected, using a numerical differentiation algorithm to
evaluate them. A surface developed by Schinke and Lester (SL) is more realistic
than ours in the 0(:D) + H2 regions, but less quantitative in its description
of the H20 molecule, Overall, the present fit appears tq be both realistic
and gquantitative for energy displacements up to 3-4eV from H:O equiiibrium,

and should therefore be useful for spectroscopic and collision dynamics studies

involving H,0.
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I. INTRODUCTION

In a recent paper, Bartlett, Shavitt and Purvis] presented the
results of an accurate ab initio calculation of the ground state quartic
force field of HZO. This calculation used a many body perturbation theory
(MBPT) method including up to quadruple excitations and a large basis set
{39-STO) wave function to evaluate all of the 31 quadratic, cubic and
guartic force constants in the generalized valence force field., Not all of
these force constants have been determined experimentally, but where accurate
values are known, the MBPT values are in good agreement with them. Indeed
the MBPT force field may be better than experiment, but in order to use this
force field for spectroscopic or scattering calculations, it must be extended
to map out regions of nuclear configuration space away from the Hzo equilib-
rium geometry.

In this paper, we use the method of Sorbie and Murre112 to fit the
MBPT surface to an analytical function. This function identically reproduces
the MBPT H20 quartic force field, and correctly describes the 0(-D) + Hy
and 91(2M) + H dissociative channels at infinite separation. In between
these 1imits, a smooth interpolation is provided. We also describe a simple
numerical algorithm for generating the parameters used in the Scrbie-Murrell
(SM) fitting method, and we correct their fit to the spectroscopically
derived force field of Hoy, Mills and Strey (HMS).3

Besides the SM surface, other complete surfaces for H-O(1A;) have

been generated by Tul1y® 4

, by Whitlock, Muckerman and Fischer WMF) and by
Schinke and Lester5 (SL). Tully and WMF used the valence bond diatomics in

molecules (DIM) method to construct their potential surfaces. The two
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surfaces are not identical because of differences in integral evalua*ion,
bu* neither surface describes the H,0 molecule with anything close to
spectroscopic accuracy. SL used a Sorbie-Murrell-like function to fit the

6 (ML), but unlike SM (see

ab initio surface of Howard, McLean aid Lester
Section II), they obtained the coefficients in their fit by a least squares
analysis. A fairly widely scattered set of ab initio 2oints was used for the
fit, with the result that their surface describes the 0 + H, and OH + K
regions more accurately than SM, but their H,0 force field is much less
accurate (though still better than the DIM ones).

Because calculated rather than experimental dissociation energies
were used for all or parts of the potential surfaces of Tully, WMF and SL,
certain energetic aspects of these surfaces are in errar, For example, the
energy associated with dissociation of H,0 to O(3P) + 24(2S) is 10.08 eV
experimentally, but only 9.37 eV on Tullv's surface, 9.15 ¢V on WMF's and
8.95 eV on SL. Likewise, the OH(Zn ) dissociation energy is 4.63 eV experi-
mentally, but 4,54 eV on Tully, 4.58 eV on WMF and 4,02 eV on SL. Both Tully
and WMF do correctly describe the energy associated with 0(!D) + H, »0(°P) +
2H(2S) (2.79 eV) but SL's value is 1.87 eV, In this pzper, we use the experi-
mental dissociation energies so as to insure the proper energetics in all
arrangement channels.,

Because the ab initio MBPT points are clustered close to the H,0
equilibrium, the present fit describes the H,0 molecule properties much more
accurately than the 0 + H, and OH + H regions. This is like the SM surface,

but in the present case, certain MBPT derived quartic force constants not

available to SM have been included in the fitting process., We will examine

here the influence of these additional constants on the long range nature of




the surface. In addition, a general comparison of the H 0 molecule pro-

perties of the SM, MBPT and SL surfaces will be mads,

II. EVALUATION OF FITTED SURFACE

The functional form of the fitting surface for H.0 152

VH70(R13R2aR3) = VOH(Rl) + VOH(RZ) + VHH(Rs)

+ VE(RlaR25R3> ] (T)
where R, is one of the OH distances, R, the other and R: the HH distance.

VOH and VHH are the OH and HH ground state potential curves, and are taker
from Ref, 7, while V3 accounts for all 3-body terms in VHNO’ Not-- that “or
R; < 1.6707&, H,0 dissociates into 0(*D) + H, (125) but f;r Ry > 1.67073, “ra
ground state dissociation channel is 0(3P) + H2 (323). Vi, inccrporates tns
behavior by switching from the IZ; to the 32: potential curves at that P:
value. This leads to a cusp in both V; and vH 0 asymptotically and neces-
sitates the use of a discontinuous form for Vazin order to make Vqu contin-
uous near the H:O equilibrium geometry. )

The functional form of V, is given by2:
V3 = A(]—tanhvlsl/Z)(1-tanh7252/2)(]-tanhYgsg/Z)P(Sl,52,53) (2)

where Si =Ry - R? (i = 1,2,3) and R; is the ith H,0 equilibrium internuciear
distance. A, Y;, Y, and Y; are parameters and P is a polyrnomial in S,, S-
and S;. This polynomial will have a different representation inside the

above mentioned cusp than outside, and we denote these two polynomials as

p'M and POU, respectively.

As discussed in Ref, 2, the coefficients in o' are conveniently

evaluated when an analytical representation of the H,0 force field is known




(near equilibrium) by relating the derivatives of this force field (evaluated

at equilibrium) to those of Pin. Although explicit analytical expressions
for these polynomial ccefficients were given in Ref. 2, their evaluation is
tedious for all but the simplest types of force fields. A much easier
evaluation of these coefficients can be accomplished by numerical differen-
tiation of

Y0 Vo (R2 )-Vou(Re )=V (R:)

P =
(1-tanhv,S,/2)(1-tanhv;S;/2) (1-tanhv;55/2) (

(@8]
—~—

when derivatives of (3) are evaluated at the equilibrium position, the
rasuiting vaiues are simply proportional to the polynomial coefficients in
Din. pout can be similarly evaluated by requiring that the derivatives of
tre ootential at S; = S; (cusp) (with Sy = S, = 0) be continuous. By using
the previously obtained 1N +o evaluate Vs for S; slightly inside the cuso
in £a, (3) and VHH for S, slightly outside, numerical differentiztion of Ea.
(3) directly yields the coefficients of the polynomial outside, as expanded

ab.ut the cusp position. pOUt

can then be reexpanded about the equiiibrium
position, if desired, by evaluating its numerical derivatives at that
pcsition. Note that the same numerical differentiation program is used tnres

out

. . . . . - in . -
times in this evaluation, once in determining P and twice ‘or P By

programming this algorithm in double precision (64 bit words) and using a

judicious choice of finite difference increment (1 x 10'5

bohr for the first
and second derivatives, 3 x 10'4 for 3rd and 4th), even the simplest di*fer-
entiation formu1a58 enable the determination of 4th derivatives to 3-4
significant figures (with much higher significance for the lower order

derivatives). Moreover, this algorithm is independent of the functional

form used to represent the ab initio potential near the equilibrium positicon,




The matching procedure at S; = S; (cusp) does not quarantee con-
tinuity of the potential across the cusp for S; # S-. This deficiency was

corrected by switching between polynomials at the cusp using the expressicn
P = A1nP1nsin2u + AOUtPOUtcoszu (8)

where

—~
ut
~—

£
1
A

71-tanhv_[S;-S; (cusp) 12 .

The value of parameter Y determines the range of mixing of the two pnoly-

nomials on either side of the cusp.

The resulting polynomial coefficients using the SDQ-MBPT(&)

potential force field of Ref. 1 are listed in Table I (labelled MBPT). Also

given are the other parameters in V3 mentioned previously (v, Y, and Y;

are taken from Ref, 2), and the analogous coefficients and parameters in a

fit (using our method) to the spectroscopically derived force field of Hoy,
: Mills and Strey3 (Tabelled HMS), This latter force field was also fit by

Sorbie and Murrell, and in Table I, we 1ist their parameters (labelled SM}.

Since the same method of fitting was used in each aco’ication, the S¥ and
HMS parameters snhould be identical. Teble I iraicezss tnat most of the
parameters agree to 3-4 significant figures. Tw~ sets of coefficients are
very different however. The SM coefficient multiplyinc S; is of similar

magnitude but opposite in sign to ours for both p1n and pout

, while the
coefficient multiplying 51%2 differs by a factor of about 3. The origin of
these differences is not known, but in the next section, we shall see that
they cause SM's potential to have slightly different quartic force field

; parameters than HMS, even though SM is supposed to be a fit to HMS.

Comparison of the HMS and MBPT parameters in Table I indicates

good agreement for the lower order coefficients, but only qualitative agreemert




for the higher order ones. The influence of these higher order coefficients

on features of the potential surface will be considered in the next two

sections. _ ?

III. PROPERTIES OF FITTED SURFACES
A. HK,0 Force Field Parameters

The first requirement of the MBPT fitted surface is that it should
be able to reproduce the MBPT quartic force field exactly. A convenient
repgresentation of this surface involves an expansion in sca 22 normzl mode

8

coordinates, If Qs is the normal coordinate for mode s, then the dimen-

sionless coordinate aq is defined by

Cws

= 2~ |

and the potential VHZO js expanded as

1
VH.,O/hC = '2‘(‘410 12 + w2q22 + ‘43Q32)

+

Ky110:% + k12203022 + k33307037 = k21192057

+

K222 * k33392052 + Kyy1101" + Ky1226:%0;°

+ k1133012032 + Kp22202" + k223202703 + k3333037 (7)
Values of the coefficients in this expansion for the fitted MBPT surface are
given in Table II., The MBPT fitted surface is labelled MBPT-F, while the
gquartic representation used to generate the fit is labelled MBP7-Q. Like-

wise, our fit to the HMS-Q surface is labelled HMS-F, while Sorbie and

Murrell's fit is labelled SM-F, Also included in this Table are the analogous

coefficients obtained from SL's surface.5




We note first in Table Il that all the quartic parameters chtained

from our fits to HMS-Q and MBPT-Q agree with those cf the surface being fit

to within 0.3 cm']

or better. The agreement should, of course, be exact, and
for most parameters, it is. A few parameters are slightly different, probably
because of round-off errors in the 4th derivative evaluation used to generate
the fitted surfaces.

SM-F's parameters differ from HMS-Q by as much as 7.7 cm'], nsrobably
betzuse of the differences in coefficients noted in Table I. SL's parameters
in Table II are very different from either MBPT-Q or HMS-Q {over 330 cm'] for
ul) although most of the parametsrs have at least qualitatively reasonabie
values. The large differences between the SL results and those of the other
surfaces are at least partially due to the lower accuracy of the ab initio
results being fit,6 and partially to the least squares procedure used by SL *o
fit HML's points (SL's fitting method places less emphasis con the H.0 equilib-
rium geometry). It should be noted that the equilibrium H,0 geometry of these
surfacas shows variations similar to those between the force constants. This
is indicated in Table III, where the OH equilibrium distances and H,0 ancle
are listed. ATso included in the table are the values of Vqu at equilibrium
for a number of H,0 potential surfaces. As noted in the int;oduction, the

values for the SL, WMF and Tully surfaces differ by roughly 1 eV from the

experimental value,
B. Other Properties of MBPT-F and Other Surfaces

In Fig. 1 is plotted VH p 3s 2 function of the H.0 bending angle
2
o (with Sy = S, = 0) for the MBPT-Q, MBPT-F and SL surfaces. The correspond-

ing curves for HMS-Q and HMS-F are quite similar to MBPT-Q and MBPT-F,
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respectively, in the figure. Notice how the MBPT-F curve is considerably
more repulsive than MBPT-Q for small 3 and less for large ¢, The SL curve
is qualitatively similar to MBPT-F for large o but not for small,

O0f particular interest in the analysis of the bending potentia?l
is the characterization of linear H,0. None of the quartic force fields are
even qualitatively correct for that geometry since the correct potential has
a saddle point there while the aquartic representations have a nonzero value
of 3Vqu/ae at & = 7. All of the fitted surfaces do have saddle points, and
the prgperties of these are summarized in Table IV, Of particuiar importance
in this table is the energy difference AV between the saddle point energy anc
the water equilibrium energy. Experimental estimates of this barrier]o
indicate a value 1.37 eV, which is in best agreement with the MBPT-F value of
1.296 eV, The HMS-F value (1.168 eV), which is very close to SM-F (1,175 eV),
is too low while SL's value (1.708 eV) is much too high. It is also inter-
esting to note that although the HMS-F and MBPT-F R, values in Table IV are
only slightly smaller (<0.01A) than at equilibrium, SL's value is 0.04A
smaller, SL's saddle point frequencies are also appreciably different {303-
390 cm'1) from MBPT-F or HMS-F,

In Figs. 2 and 3 are plotted contour diagrams of the MBPT-F surface
as a function of the two OH distances R; and R, for the equilibrium and linear
H,0 configurations. A cut through Fig. 2 corresponding to symmetric bond
stretching displacements is given in Fig. 4. Included in this figure is &
comparison of the MBPT-Q, MBPT-F and SL surféces. There is good agreement

between HMS-F and MBPT-F for symmetric bond stretch displacements excepnt at

very large and small values of R;, so we have not plotted the former curve in

the figure. Fig. 4 does indicate that the MBPT-Q potential is more repulsive




than MBPT-F at both large and smell R;. The difference between MBPT-Q and
MBPT-F remains smaller than 0.1 eV for displacements over 2 eV away from
equilibrium. This contrasts with the behavior in Fig. 1, which indicates
0.1 eV differences only 0.7 eV above equilibrium. Since the analogous com-
parison for the asymmetric bond stretching potential indicates excellent
agreement between MBPT-Q and MBPT-F for several eV displacements, we conclude
that the most serious errors in the quartic representation of the H,0 potentiz!l
arise for bending displacements. These errors can be important even for the
Tow lying vibrational states of H20 since the vibrational zero point enercy
10.59 evV) is comparable to the eneragy displacement needed tc make the differ-
ences between MBPT-F and MBPT-Q large.

Comparison of the SL and MBPT-F curves in Fig. 4 indicates reasonable
correspondence for large R; corresponding to 3-body dissociation., This
indicates that at least for coordinate displacements of the type indicated,

the fitted MBPT surface agrees with one known to be more accurate asymototically.
C. Surface Properties in the 0(1D) + K. Region

In Fig. 5 are plotted contours of the MBPT-F surface correszoncding
to Cp, symmetry collisions of O(!D) with H,. The distance X in the figure
is the oxygen atom to center of mass of H, distance. Previous ab initic

6,11

studies have indicated that the minimum energy path for 0 (:D) + H,~ OH + H

follows this and similar geometries, and the present MBPT-F surface concurs with
this. Two cuts through the contours in Fig. 5 are plotted in Figs. 6 and 7.
Fig. 6 plots the MBPT-F, HMS-F and SL values of VH70 versus X for the

equilibrium H2 value of R,, while Fig. 7 presents the analogous plot for the

eauilibrium HZO value of R3. No barriers are evident in the potential curves
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for any of the three surfaces. This agrees with the results of Ref. 5, but

disagrees with the barrier found by Gangi and Bader]]. Since the experi-

mental activation energy for 0(:D) + H, is apparently zero]z, we presume that
the zero barrier result is correct.

Fig. 6 indicates that for R; equal to the H. equilibrium value, the
MBPT-F and HMS-F potentials exhibit strong attractive behavior at much larger
X values than SL. Since the minimum energy paths for large X follow the curves
in this figure, we conclude that the HMS-F and MBPT-F minimum energy paths
have much more attractive profiles for large X than SL., Close to H,0
equilibrium, the minimum energy paths switch to the curves depicted in Fic., 7,
where the MBPT-F, HMS-F and SL curves are quite similar, Thus it is only at
larger distances where there is much discrepancy between the surfaces, and we
find that even in this 1imit, the MBPT-F and HMS-F are still very close. This
suggests that the quartic terms in the force fields (which differ substantially
between MBPT-F and HMS-F) do not play an important role at the larger distancas
considered., In Ref. 5, the differences between SM-F (which is close to HMS-F)
and SL were traced to the switching function parameters iy, ¥, and ¥3 in V:.
The values used by SM (and by us) are a factor of two larger than those used
by SL. This causes V3 to be cut-off more rapidly in displacements from
equilibrium for the MBPT-F and HMS-F potentials than SL. This explains why
the different quartic potentials used by MBPT-F and HMS-F have so little
influence on the shapes of tne curves in Fig. 6. Since SL's curves aareed
well with HML's ab initio results in this region, it seems likely that the
SL curve is more accurate than MBPT-F and HMS-F in this region. This differ-
ence does not have a strong effect on the thermal rate constants, however., At
300 K, SL found that thermal rate constants for their surface were about a

factor of 2 lTower than SM-F, Since both results were within experimental
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uncertainties, no definitive statement concerning the relative accuracies of
the two surfaces can be made based on this comparison, The larger value of
the SM-F rate constant is consistent with the longer range of the attractive
part of that potential surface. This is very likely to be true with the
MBPT-F surface as well.

1t is also of interest to examine the behavior of the potentials
for linear OHH configurations. Here, in agreement with Ref, 5, we find that
the SM-F, HMS-F and MBPT-F surfaces exhibit wells while the SL surface has a
smail barrier followed by a monotonic decrease in energy along the reaction
path going to OH + H, The MBPT-F well occurs at R; = 1.0542, Ry = 1.0052,
and has an energy of -5.961 eV relative to O(3P) + 2H(2S) (1.329 eV below the
OH(®~ ) + H arrangement channel energy). The HMS-F well occurs at R, = 1.0293,
R: = 1.0163, with an energy of -6.076 eV (1,444 eV below OH + H). The SM-F
well occurs at Ry = 1.02A, Ry = 1.02A, and is 1.47 eV below OH + H°. The SL
barrier is at R; = 1.183, Ry = 0.763, and has an energy 1.3 kcal/mole above
0(1D) + H» (2.23 eV above OH + H). The wells observed for the MBPT-F, HMS-%
and SM-F are all well above HZO equilibrium, but they are orobably artifacts,
as no ab initio or semi-empirical evidence supports their existance.5 The
MBPT-F well is only slightly smaller than HMS-F, which indicates that neither
the additional quartic terms present in the MBPT-Q potential nor the more

accurate MBPT-Q force constants has much infiuence on this artifact.

IV. CONCLUSION

In this paper, the accurate MBPT quartic force field of Bartlett,
Shavitt and Purvis has been fit to an analytical function using a method

developed by Sorbie and Murrell. Properties of this surface have been

analyzed and compared with those of previously determined surfaces (including
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a reparametrized S fit to the HMS force field), Our analysis indicates that
this fitted MBPT surface describes the properties of the HZO molecule
ext 2mely well. In addition to reproducing the MBPT guartic parameters at
the equilibrium geometry, this surface reproduces the known energy associated
with straightening the H,0 molecule better than any other global surface. Far
away from equilibrium however, this surface is much less accurate. For the
0(-2) + H. arrangement channel, the surface shows a much longer range attractive
potential than has been observed in ab initio calculations, although the error
in therma) rate constants introduced by this feature is apparently inside
experimental uncertainties. In addition, the O + H, linear geometry exhibits
a spurious minimum. These errors all arise for geometries where the 2-body
part of the potential has largely been damped out, so that the more accurate
quartic force field used to represent Hzo in this surface has no corrective
influence. Evidently to improve upon the surface in these regions it will be
necessary to use higher terms than quartic in the H,0 force field, or an
improved choice of the damping coefficients v, Y, and v;, or the explicit
incorporation of ab initio points far removed from H:O eaquilibrium in the
fitting algorithm,

Despite the apparent inadequacies of this surface in the 0(-D) +
H2 regions, it does provide an excellent representation of the HZO potential
close to equilibrium (probably for energies as high as 3-4 eV above the HZO
minimum)., As such, this potential should be useful for spectroscopic studies,
and as the intramolecular pctential in nonreactive coiilision problems involving
H,0 as one partner, Indeed for both such studies, the MBPT-F surface is much
to be preferred over its quartic counterpart, for important deviations

between the quartic and full surfaces can occur for bending displacements only

0.7 eV above H20 equilibrium,




13

The comparisons of the MBPT-F surface with others indicated that
it is very similar both qualitatively and quantitatively to HMS-F (the
latter being close to but not quite the same as SM-F). Near H,0 equilibrium,
the MBPT-F is qualitatively similar to but gquantitatively different from the
SL surface, with SL the less accurate, while far from equilibrium (in the
0+ H, region), it appears that SL is the more accurate surface. O0Of course,
the exact surface characteristics in the far from equilibrium configuraticns

are still not known very aquantitatively.
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TABLE I. POLYNOMIAL COEFFICIENTS IN 3 BODY FITTING TERM
PINCS.<S,(cusp)] POUL[S.>S . (cusp)]

Term W S WEPT i TS FEPT
1 ] ! 1 1 ] 1
$,(S,) 1.542] 1.5402  1.5207 1.8750  1.8676  1.8559
S, 4.6539  4.6551  4.6455 -0.3691  -0.3582  -0.3563]
5.2(552) 1.5720 1.5748  1.2746 3.1767  3.1773  2.0102
5.2 26,6355 -4.4369  -4.8014 22,4168 -2.4096  -2.60€5
$.5.(5-5:) 17.9914  17.995  18.049 3.1803  3.1849  3.231f
5.5- 21,9761 -1.9861  -1.7863 1.2577  1.2402  1.349
$.3(5,7) 6.5279  6.0132  4.3146 71737 6.8763  5.54)
E 7.5781  -7.5742  -9.3266 -5.2200  -5.2016  -£.1567
$,5,2(5,5,2) 1.9240  5.0266  10.088 8.1229  8.1405  10.893
$.5:2(5,542) 11.3559  11.391 14.816 6.2908  6.2925  £.1619
$.25.(5,25:) 22,3568  22.279  21.204 -2.2456  -2.2399  -2,7979
55,54 23.1978  23.089  12.017 -1.7899  -1.8101  -7.8075
S.4(S, - 0.6787  -0.5793  -3.6377 0.3677  -0.3056  -1.9708
5, -11.4851  -11.478  -14.031 -6.7255  -6.7552  -8.1599
S- %5, {S.35.) 1.5255  0.5220  -2.5556 0.8266  0.3061  -1.3837
5552 -5.792¢  -5.9434  4.2511 -3.1387  -3.2029  2.3532
$,354(5- 35 ;) 59.6057  59.011  63.497 9.1025  8.8604 11,376
§.25.2(5,25,2) -22.2496  -22.368  -21.790 15,1988  -15.311  -1%.00¢
$,5:3(5:57) 20.8998  20.982  23.152 £.0856  8.1767  ©9.3882
$.5,55° -18.3900 -18.712  -20.269 -13.1075  -13.316  -14.186
$.25,5.(5,5,255) 93.5650  93.800  86.304 15.9060  16.160  12.198
AIN(ev) -0.9418  -0.94159  -0.94354
A0UT(ay) -1.7381  -1,7346  -1.7344
S (cusn) (A) 0.1568  0.15677  0.15638
L% (A7) 4,5348  4.5348  4.5348
iy (81 2.0 2.0 2.0
RO;(é) 0.9572  0.9572  0.95680
Riy(A) 1.5139  1.5139  1.51429

25.0

ey

Iy

T

s
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TABLE II. QUADRATIC, CUBIC AND QUARTIC FORCE FIELD
PARAMETERS FOR H,0 SURFACES
HMS-Q HMS-F SM-F MBPT-Q MBPT-F SL
3831.5 3831.4 3832.0 3865.0 3864.9 3830.2
1648.8 1648.8 1648.6 1687.4 1687.4 1568.2
3942.2 3942.1 3942.6 3975.0 3975. 4039.2
-302.5 -302.5 -304.9 -304.2 -304.2 -270.7
63.6 63.6 63.6 42.9 42,9 10.1
167.4 167.4 168.2 148.6 148.6 235.7
-53.1 -53.1 -53.7 -61.8 -61.8 -49.0
-927.8 -927.8 -935.5 -914 .1 -914.1 -840.9
-138.8 -138.8 -139.2 1117 -111.6 -36.9
31.9 31.8 31.8 31. 215 34.6
2.1 2.1 2.1 -2.6 -2.6 25.2
35.4 35.4 35.3 32.0 32.0 12.0
-85.6 -85.4 -86.2 -75.1 -74.8 -65.
201.3 201.4 201.3 190.3 190.4 152.5
-101.1 -100.9 -101.5 -91.7 -91.4 -98.0

&

caisioil Xiskitinntadatentcntin




TABLE III.
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EQUILIBRIUM PROPERTIES OF H,0 MOLECULE

2 b~
Surface Vi o(eV) RI(A) 25 ()
SM~F HMS~F ,Experiment -10.0705 0.8572 104,52
MBPT-F -10.0705 0.95682 104,62
sL -8.95 0.9867 103.98
WMF -9,16 Nn.9778 92.8]
Tully -9,37 0.979 100.3
Potential at H,0 equilibrium geometry [relative to O(°P) + HEis}
< + H(-S)

(a)
(5} OH equilibrium position
(c)

H,Q angle
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TABLE IV, PROPERTIES OF LINEAR =0H SADCLT POINT

a b Co d e f
Surface VHAO(eV) aV(eV) R(A) wyiem=1) o (em=1) wg(Cm_1)
£
HMS-% -8,9G2 1.168 0.9506 3577 14074 4064
MBPT-F -8.774 1.296 0.9480 3585 15021 4005
SL -7.083 1.708 0.9469 4399 18671 4678
fz) Potential at saddle point relative to 0(3P) + H(IS) + H(!S)
{b) Difference between saddle point energy and corresponding H,0 equilib-
rium energy
fc) OH distance at saddle point
{¢) Symmetric stretch freguency
le' Bend frequency
(f; Asymmetric stretch frequency




FIGURE
FIGURE

FIGURE

FIGURE

u FIGURE

FIGURE CAPTIONS

MBPT-Q, MBPT-F and SL potentials (in eV) versus HOH bend angle ¢
for Ry, R, fixed at their equilibrium values.

Equipotential contours of Vu,0 (MBPT-F) versus R;, R- for 2
fixed at its equilibrium value. Contours are in 1 eV increments
starting with the lowest at -10 eV relative to O{3P) + 2H(ZS).

Contours of Vy g (MBPT-F) analogous to Fig. 2, but for ¢ = 180°
(linear HOH). °

MBPT-Q, MBPT-F and SL potentials (in eV) versus R; for R, = R;
and = at its equilibrium value.

Contours of V.o (MBPT-F) versus X and R; for perpendicular 0 + H-
geometries, The distance X is the O to center of mass of H, dis-
tance. Contours chosen are the same as in Fig. 2.

MBPT-F, HMS-F and SL potentials versus X for perpendicular Q0 + H:
and R. equal to the H; equilibrium distance.

MBPT-F, HMS-F and SL potentials versus X as in Fig. 6, but for R: ]
equal to the H,0 equilibrium H, distance.
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We calculate the adiabatic potential energy curves and nonadiabatic
first-derivative couplings for the X, A, and C 12+ states of KH by an ab initio
one-electron pseudopotential formalism. The splitting of the X and A curves
at the avoided crossing is in good agreement with experiment. The ab initio
results are used to calculate the electronically inelastic transition proba-
bilities and cross sections for K + H collisions at low energies by R matrix
propagation in the adiabatic representation with exponential sector trans-
formations. Jince this method has never been applied before, we made an
extensive study of its convergence properties and efficiency. We found
it to be a convenient, accurate, and efficient method. The cross sectiomns
are changed by about a factor of two when the potential curves are changed
by a different treatment of the KH+ core, but only by about 1% when the
assumptions about the nonadiabatic second-derivative coupling terms are
altered. Our estimate of the QZP-+428 quenching cross section at 0.022 eV
relative translational energy is 2-4 x 10-4 2

ag-
8-10 x 10_4 ag by 1.1 eV. The emphasis in this article is on testing and

This increases to

evaluating the new method for solving the scattering problem rather than

on the cross sections themselves.
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I. TINTRODUCTION

The standard quantum mechanical treatment for low-energy atomic and
molecular collisions is the close coupling method.l When more than one
electronic state must be considered, one can use an adiabatic or a diabatic
representation for the electronic wavefunction. The diabatic representation
has the mathematical convenience of no derivative coupling operators, but

it is not unique.”’

One way to specify it completely is to define it by

a transformation from a finite number of adiabatic states, where the trans-
formation is defined by requiring the first-derivative coupling to vanish

in the finite manifold. It is also possible to solve the coupling equations
directly in the electronically adiabatic representation, including the
derivative coupling. A new method for doing this has been proposed by

two of the authors,3 and it is applied here for the first time. The method
involves R matrix propagation and requires as input only the adiabatic
potential curves and first-derivative coupling matrix elements obtainablea
from standard electronic structure calculations. For the present appli-

. . . . . 5-11 . .
cation we consider collisions of K with H, we consider onlv radial

. 1.+ . . . . 5
coupling between "I states, and we obtain the adiabatic potential curves y
and first-derivative coupling matrices by ab initio methods.

Section II presents the coupled-channels scattering equations and the
details of how we solve them. This section also compares the new method to

12 - .
the method Johnson and Levine ™ proposed for this problem and to a method
13 . . .

one of us and Wvatt have applied to solve reactive scattering problems

in vibrationally and rotationally adiabatic representations. Section III

gives details and results of the electronic structure calculations performed

to renerate the input to the scattering equations. Section IV presents the




details of the scattering calculations, section V presents results, and

section VI is discussion. The emphasis in the present paper is on evaluating
the new method for solving the scattering equations rather than on the

cross sections themselves.
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II. THEORY

A. New method

-

Consider the coupled I states of a diatomic system with nuclear masses
m and my and Ne electrons each of mass m,. The total Hamiltonian is given

by
2

£ 2 2 BZ
- 3 g 4L +He(R) -7 7 .7 (L

ap B 3r% zuABR2 2(my +mg) g

=51
1
50 |

where R is the internuclear distance, r, is the vector from the center
Y
of mass of the nuclei to electron i in the body-fixed frame, L is the

angular momentum operator of the relative motion of the nuclei, HaR is

the reduced mass for this motion, and He is the "electronic Hamiltonian"

H (R) = - lii bX 72 + V(x,R) (2)
e 2m_ ;7 r, &
e i i
Ne
where we have denoted x as the collection of electronic coordinates {ri}i=l’

and V(§,R) includes all the pairwise coulomb interactions between nuclei
and electrons.

The radial coordinate is subdivided into sectors numbered (i), and
(1)
99

initial conditions, is expanded in an orthogonal, approximatelv adiabatic

within each sector the total wavefunction V¥ (x»R), where 94 denotés the

, a . . A - .
basis 4 (x;i) which is independent of internuclear coordinate:

PR = B n 1T 3R &)
’ N

s . a
where ¥ is a row vector of elements Vq , ¥ 1s a column vector, each column
. vl
a ., . . . 0 . a
of « 1is a different linearly independent solution, and each row of ¥

% “

corresponds to one of the channels.




4=

The approximately adiabatic basis states in sector (i) are chosen to
diagonalize the molecular electronic Hamiltonian in the body-fixed frame
at the center Ré of the sector, i.e.,

fax »2Gs D) B RO ¢ 1) = bagafa® %)

Coupled radial equations for each sector (i) are obtained by substituting
egs. (1)-(3) into the time-independent Schrddinger equation for total energy
E, and closing on the left with an adiabatic basis function ¢31(§,i). Neg-
lecting the mass polarization term [last term of eq. (1)] and Z-7 coupling,

the coupled equations in sector (i) are

P RIS
o e et R CO T RS ¢ TED

“AB dR R 9 419

a a
+ T VS (R;1) x (R;i) = 0 ' (5
q 919 a9,
where

a a%x a a
v R;i) = Jdx 3 si)H (R) ¢ (x31) - ¢ (1) 38 6
4 Jax a, (B D H ) G0 - e () a0 (6)

The matrix elements Va q(R;i) are defined for all values of R in sector (i)
1
using basis functions that would usually be used only for calculations at

. i

the center of the sector; these matrix elements are zero at the center RC
: . a . .

of each sector. Also, because the basis functions ¢ (3;1) are independent

¥

of R within a sector, the coupled radial equations in each sector contain

no derivative coupling terms. A more convenient form of eq. (5) is q
2
d a 2
= SR = TR PR (7
dr™ ™ A ~

where




9
3 2. . houG+ \
ViR = vty + g + RO g (8) 3
v - ™ : 2. ‘ 4
h 21agR ]
and the diagonal matrix ga(i) is given by };
a a
E° (1) = (1) 8 (%
a9, a7 Tqq

. . . . . a .
Using standard numerical techniques, the radial wavefunctions yx (R;i) can
2V
be propagated from the left side to the right side of sector (i). Continuous
solutions with continuous first derivatives are obtained for multi-sector

regions by imposing the following matching conditions at each sector boundary

,(1-1) i-1, _ (1), i

¥ %Ry ) = ’q (%R)) (10)
d ,3GE-1) i-1, _ d (1) i

iR 'q %Ry ) = 3R i (%) (11)

where R;(R;) is the value of R at the right (left) boundary of sector (i).

Substituting eq. (3) into eqs. (10) and (1ll) and rearranging vyieids

4 el 4y 2 oTeioren & L3 9

ar X (Rg 51D T(i-131) o5 X (Rp31) (12)
a, i-1 a, i

3 ;i-1) = T(i-1;1i) , ;1 13

x Ry T3i-1) = T(i xR 1) (13)

where

T (i-131) = [dx+® (x3i-1) 42 (x31) (14)

qql 2 q " ql .

Equations (12) and (13) provide the initial conditions for propagation
across sector (i) given the solution in sector (i-1). Thus a continuous S
solution can be constructed over the entire scattering region. The equations

presented so far are essentially the same as those in the method proposed i

12 . L L i
bv Johnson and Levine. However, instead of requiring an explicit evaluation




e e e e =y ,

of the inconvenient overlap-type integration in (l4), we relate the trans-
formation matrices I(i—l,i) to the standard nonadiabatic derivative coupling
matrices.

To accomplish this, we define

i N = a i ! i
qu(RC,y) <¢S(§,Rc)i¢q(§,Rc + y)> (15)

where the matrix element indicates integration over the electronic coordi-
nates. Then

_h, +h,
T(i,i+l) = M(Ré,—i—mﬁl

) (16)

where hi is the length of sector (i). Differentiating (13), we obtain

3 i a, i 3,.a, i
JSENY = =] »
55 e Reo? <¢s<§’Rc)‘ayl“q(§’Rc +y)> an
] 2u . .
-2 oy w®@w P @ty (18)
4" s ss1 C slq C
1

where F (r) is the nonadiabatic derivative coupling matrix defined by

2
Fy q(® = - :zh
19 YAB

_2_;
3R/

a a
<¢Sl<§,R)l b R (19)

In obtaining eqs. (18) and (17) we assumed that ﬁa(§,i) form a complete set
of states. When this approximation is used in coupled-channel calculations
employing a truncated set of states, its validity can be ' .sured by obtaining
converged results with respect to increasing the basis size. The effects

of this approximation for finite basis sets are discussed further in the

Appendix. Equation (18) can be solved numerically for ﬂ(Ré.y) using the

Magnus method,
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-7~
MrE vy = MRE,0) exp [N(RE, )] (20)
‘-4 C’. ,\J CY C\,
where
i zuAB a
NRe¥) === [ dy" F (R, + ¥")
h
“ap2 Y y' a, i a i
+ 2(-5) [ dv' [ O dy"[FTRL 4+ v, PR+ ¥y 4 .. (21)
2 A C A C
h 0 0
and
i, 4
M (RLLO) = 1 (22)

i . .
Let RM be the midpoint between sector centers

i+1

i,
Ry = ¥R + R. ) (23)

and expand the coupling matrix in a Tavlor series around this point

i ) . . dF?
a 1 ~ a 1 1 1 '\J 1
v = - —— b X!
PR+ 1) SR + (v + Ry = RY 5o (RY) (24)
h_-&-h.+1
Substituting (24} into (21) and retaining terms through order 21 yields
. h +h 2y h, +h h,+h
i i i+l "AB , i i+l _a, 1 i i+1.3
MRe—=37 ) = - 3 (T ) E Ry + 0L (25)
and, by (16) and (20),
2u h, +h, . h,+h
. _ AB i i+l _a, i i i+l.3 "
,Z(1,1+l) = exp L——;E— —— F (RM)] + O[C——TT———-) ] (26)

This completes the derivation of a way to perform the sector-boundarv matching
of (12) and (13) by using the standard functions {a(R) rather than the non-
standard overlaps of (14).

The essential step in the new method is eq. (26) for the sector trans-

formation matrix. We note that this expression is identical to the sectoer




i gy = - Attt o i
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transformaction matrix given in eq. (12) of reference 13. The derivation
and the context are different, however. In reference 13 the problem con-
sidered was reactive scattering in a vibratiomally-rotationally adiabatic
basis, and the propagation of the radial wave functions of (7) from R{ to

k4,15 In the present

i . .
RR was accomplished by the first order Magnus method.
case the internal degrees of freedom being considered are the electronic
ones, and we will accomplish the propagation across a sector by the R matrix

propagation method,» 16718

Comparison of the approaches illustrates that

eq. (26) provides a general sector transformation matrix for solving scat-
tering problems in adiabatic bases. For problems involving both electronic

and vibrational-rotational degrees of freedom, such as electronically inelastic
atom-molecule or molecule-molecule scattering, it is possible either (i) to

use (26) or eq. (12) of reference 13 to treat all degrees of freedom in

an adiabatic representation or (ii) to treat electronic degrees of freedom

in an adiabatic representation and to treat other degrees of freedom by

, . . . 19 . . .
the diabatic representation that is more standard for vibrational-rotational

degrees of freedom.

B. Standard methods
To compare with the adiabatic-at-the-center-of-a~sector method given
above, we present here the equations for the standard adiabatic and diabatic
; 20
propagation methods.
. . ; . . a ,
Using a continuous adiabatic basis (¥,R) the coupled equations analogous
\
to eq. (5) are

W22 24
{_ ”n {_‘_j_, (/(57,"'].) + z\B

2u 2 2

E

P+EEm s 2t st =0 @n
J Ry

AB dR2 R h




where

EY R) = £2(R) £ (28)
qq, q aq,

2 32
2 (R) = - - <¢ (x5 R) |2 |¢ (x,R)> (29)
19, “HAB 3R> 91

and Ea(R) is defined in (19). Equation (27) contains the radial~derivative
couplings ga(R) and ga(R), but the angular-derivative couplings do not appear
because we restricted ourselves to [ states at the beginning of section II.A
Note that }a(R;i) and éa(R) become identical in the limit of small sector
sizes. The first-derivative coupling term can be eliminated from (27) by

transforming to an orthogonal diabatic basis such that the transformation

matrix E(R) obeys the following equation

' = Pryie (30)

The transformed coupled equations are then given by

2 2 2u
ST L UL e R (31)
“AB dR R h ~
where
d _ a T (32)
B (R) = UR) EX(R) - (R)
3 ®) = UR) 2R (33)
A, Y ",

and the second-derivative coupling in the new basis is

a
dF 2y AB

¢ =g E® - W] AR (3)

1t can be shown that in the limit of a complete basis

aFr? 2
a o AB 35
S (R) = Frul h [F (R)] (35)

and thus Gd(R) vanishes in that limit. The diabatic basis defined by equations

~

<

(30) and (32) is a P-diabatic basis in the terminology used in references 2

and 3.




IIT. SYSTEM AND METHODS
The system studied for a test case is K + H. The adiabatic potential
curves were calculated by a one-electron modelll’21 for alkali hydrides
involving effective core potentials to represent K+ and H. This method
is described in reference 11, and the effective core potentials and orbital
basis set used are also given there. The three lowest-energy adiabatic
states ¢§(§;R) of 12+ symmetry were calculated by diagonalizing the one~
electron Hamiltonian in the orbital basis. The potential curves for these
states were calculated by adding the energy of the KH+ core to the one-
electron eigenvalues. The KH+ core energy is approximated by a full KH+
calculation or by a calculation on KH+ employing only a single H ls basis
function.11 Following reference 11, we call these two choices methods
21 and 2H, respectively. As discussed there, method 2H is expected to
be the more accurate one. The derivative coupling matrix Ea(R) was then
calculated from the wave functions by using
<03 (eiR) 2=t o2 (x5R)> = Lim 3 M, (R,8) (36)
i IR Tk A 8§20 § ik
since <¢jl¢k> = 0. A value of 0.001 a, was used for §. For calculating
the overlap integral Mjk(R,é), defined by (15), the K nucleus was fixed
and the H was moved by the amount §. This corresponds to placing the origin
of the electronic coordinate system at the K nucleus, and it makes the

3 <3 submatrix of Ea(R) for the states considered here tend to a null matrix

at R = », which makes it straightforward to impose scattering boundary conditions.

"

By
§ s

Other possible choices of electronic origin are discussed elsewhere.
. , . a . .
The calculated adiabatic potential curves eq(R) are shown in Figure 1,
and the calculated first-derivative coupling matrices are shown in Figure 2.

In Figure 2 we use the notation

et
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a 2. -a
F®) = -h7/2: ) £7(R) (37)

Transforming away the first-derivative coupling by the 3 x 3 matrix Q(R)
vields the diabatic Hamiltonian matrix gd(R) whose elements are illustrated
in Figures 3 and 4.

The results are given in hartree atomic units: 1 a.u. energy = 1 hartree

Q
1 E = 27.212 eV, and 1 a.u. length = 1 bohr =1 ag = 0.52918 A.

h




IV. SCATTERING CALCULATIONS
We will compare several different methods for solving the scattering
problem.
A. First order Magnus approximation in the adiabatic representation.
In this method we rewrote (27) as
ay” o
R Q(R)Xl (R) (38)
where
X% (R)
a
I (R) = a (39)
dx_
dR
0 I
v Y]
A(R) = (40)
p? (R) 2£%(R)
and
2uAB a a ﬁzzgz+1)
Q(R) = 2 [E (R) + G (R) + ( 5 -~ E),%] (41

h

ZUABR

Equation (38) was integrated by the first order Magnus approximation

Y2 (R+h) = exp[hA(R+%h) Y (R)

7
The exponential was evaluated by a power series, retaining terms through h .

Checks showed that the same results were obtained by retaining terms through hs.

The scattering matrix was evaluated by applying boundary conditions to

X2 (R)
a¥}

2
in the usual way. 3

We employed a fixed stepsize h and decreased it

till convergence was obtained for “he absolute squarss of scattering matrix

elements.
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B. First order Magnus approximations in the diabatic representation

with power series evaluation of the exponentials. In this method we rewrote

(31) as
ayd
Y d
) - RRIYTR) (43)
where
éd(m ]
d
ArCVIE (44)
dx
3R
9 X
p® = (45)
KON
and
d g 4 d 82200+ 1)
@ = —utm s gt ¢ (AEEED gy (46)
A ZuABR

Starting with the same input, Ea(R) and Ea(R); as for method A, we integrated
(30) simultaneously with (43) so that we could calculate %(R) from (32), (45),
and (46) as we needed it. We assumed gd = 0 as discussed after (34). The

first order Magnus approximations are

T a T
U (R+%h) = exp[-hf (R)] U (R-%4h) (47)

and

Xd(R+h) = exp[hg(k+sh)]xd(R) (48)

In (47) and (48) the exponentials were evaluated by power series through h7.

The boundary conditions and stepsize were handled the same as in method A.




C. First order Magnus approximation in the diabatic representation

with analvtic evaluation of the exponentials. This method is the same as

method B except for the evaluation of the exponentials. The exponential

in (48) was evaluated analytically in terms of the eigenvalues and eigen-
vectors of Qd(R) as explained by Light.l5 Since we still assume gd(R) = 0,
the eigenvalues are the already-available eZ(i) and the eigenvectors are

the columns of Q(Ré). The latter are obtained from (47), but in this method

the exponential in (47) was evaluated analytically. Since %a is skew sym-

a a
12° "13

f;3. This kind of procedure is very efficient for 2 x2 and 3 x 3 cases, and

metric, the exponential in (47) can be evaluated in terms of f f ., and

we used it for the calculations reported here. For matrices of order greater
than 3, the exponential of a skew symmeteric matrix can be evaluated efficiently

by diagonalizing the square of the skew symmecric matrix.zlhzS

The boundary
conditions and stepsize were handled the same as in method A.

D. R matrix propagation with adiabatic basis functions at sector centers

and with the exponential sector transformation matrix. This is the new

method of reference 3 and the present paper. The propagation across a :

sector was accomplished by the R matrix propagation method,3’]’5-17 using

a modified version of an R matrix propagation code that has been discussed

26,27

elsewhere. Since Ea(R) is skew symmetric, the exponential sector trans-

formation matrix (26) was evaluated analytically in terms of Fi , and

a
20 F13

<

F23 as discussed in subsection C above. The method for extracting a scat-

-

"
tering matrix from the global R matrix is explained elsewhere. " We used

26,27 with one stepsize parameter s(l) for

R < 25 ag and another 5(2) for R > 25 ay- 5(2) was set at a value that .

(D

yields high accuracy, and ¢ was decreased till convergence was obtained

a variable stepsize algorithm

for absolute squares of scattering matrix elements. |
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E, F. Numerical integration in the adiabatic representation. For these

methods we applied a fixed-stepsize Runge-Kutta-Gill integration28 (method E)
or a 5th order variable~stepsize predictor-corrector algorithm29 (method F)
to integrate eq. (38). The boundary conditions were handled the same as in
method A.

G, H. Numerical integration in the diabatic representation. Finally

we applied the Runge-Kutta-Gill (method G) and 5th order variable-stepsize
predictor-corrector (method H) methods to simultaneously integrate eqs.

(30) and (43). The boundary conditions were handled the same as in method A.

I. Initial valuec and boundarv conditions. For all the methods we

started the integration of the radial wavefunctions at small enough R that
the results are invariant to further decreasing the starting value. In par-
ticular we started the s-wave solutions at 1.1 3, and 2.1 a, for the 21T

and 2H potential curves, respectively, for E = 0.06 E For higher E we

e
started at smaller R, and for higher ¢ we started at larger R, e.g., 2.2 a,
for 2 = 15 for the 2H potential curves for E = 0.06 Eh. At the starting
point the radial wavefunctions were taken as zero and the matrix of radial-
wavefunction derivatives was the unit matrix. This generates N linearly
independent solutions where N is the number of states retained in the wave-
function expansion. At R = 70 ay, we transformed to the adiabatic repre-
sentation (only necessary in methods B, C, G, and H) and took linear com-
binations of the linearly independent solutions to obtain the correct
scattering solutions satisfying the Ricatti-Bessel boundary conditions
for the radial wavefunctions and their derivatives.

For methods B, C, G, and H we need also specifv the initial values for

T ..
U at the center of the first sector. It can be shown that the scattering
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matrix obtained by the above procedures is invariant to the starting value
of ET so we started it as the unit matrix. This transformation generates
an arbitrary linear combination (with R-independent coefficients) of the
physical diabatic states, where the physical ones are the ones that make
Qd(R) diagonal at large R. Let QT(R) denote the transformation matrix

for the physical diabatic states. QT(R) is not needed for scattering cal-

culations but is required to make Figures 3 and 4. It is generated by

¢"(R) = piarge ®) IT(R) (49)

where large R = 70 a_. in practice and both matrices on the right side of

0

(49) are generated by solving (47) with HT(R + %h) = %.

start

In all cases we checked that ending the integrations at R = 69 a,
would have given the same scattering matrices (within 0.1%) as ending at

R =170 ag-

J. Stabilizing transformations. For all the methods except R matrix

propagation, method D, it is necessary to integrate the radial wavefunction
through classically forbidden regions. 1In such regions one faces the well
known problem that components of the solution vectors grow exponentially

. . 30-32 -
and can cause the solution vectors to become linearly dependent. This
problem is handled by performing a Schmidt orthogonalization of the solution

. a d e . .

matrix, X (R) or ¥ (R), after a specified number of integration steps have
been taken in regions in which at least one channel is closed. For step-

sizes small enough to insure 0.0l1% accuracy it was found that stabilizing

every 20 steps was sufficient so that the transition probabilities were

invariant to 6 significant figures to orthogonalizing even more often. Doubling

the number of orthogonalizations increased the computer time »v only 107.

For the larger stepsizes which give approximatelv 0.5 accuracy. stabilizations

were performed everv step in regions in which at least one channel is closed.
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V. RESULTS AND DISCUSSION
In all cases we included three states in the coupled-channel calcu-
lations.

A. Comparison of methods. We made a detailed study of computational

efficiency for the case of the s-wave probabilities at E = 0.06 Eh. First
we performed some calculations with very small stepsizes (i.e., small sector

widths) to get the accurate transition probability P connecting the first

12
2 9

(47S) and second (47P) atomic states. Then, for the six most efficient

methods we performed calculations for a fine grid of fixed stepsizes (methods

A, B, C, E, and G) or fixed stepsize parameters e(l) (method D) to find the

minimum computing time required to achieve 0.5% accuracy for this probability.

These computing times are given in Table I, where thev are expressed as

ratios to the computing time required by method D. We see that the new

method, i.e., the variable-stepsize R matrix propagation method in the

adiabatic representation with the exponential sector transformation matrix,

is the most efficient of the seven methods tested in this work. Second

most efficient is fixed-stepsize Magnus integration in the diabatic repre-

sentation with analytic exponentiation. Analytic exponentiation was about

twice as fast as using the power series, even though the power series was

coded very efficiently to take advantage of the structure of zeroes in

the matrices. The Magnus methods could probably be made more efficient

by using a suitable variable-stepsize algoriihm, but this was not attempted.
It is well known that the most efficient method for one level of accuracy

1s not necessarily the most efficient method for other levels of accuracv.

A more detailed comparison of the two most efficient methods, on the same

scale as used for Table I, is given in Table IT. Table II shows that the
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convergence of both methods is smooth and that method D is also efficient
for higher accuracy, e.g., it is 3.7 times more efficient than method C for
0.1% accuracy in P12'

It should be clear that, although eight methods have been compared

for the same problem, there has been no attempt to determine the absolutely

fastest possible way to solve the coupled-channels problem. The main con-

clusion of tliis section is that the R matrix propagation method in the
adiabatic representation with the exponential sector transformation matrix, ;

which is a very convenient and stable method, is also very efficient.

B. Propabilities. The s-wave transition probabilities ror the two

sets of potential curves are shown in Figure 5. These probabilities show
regular osciilations as functions of 1/E, and the envelope of the oscil- 1
lating probabilities increases with increasing energy above threcghold.
The small differences between the two sets of potential curves change the i
phase of the oscillations in the tramsition probabilities, but they do not

make large changes in the magnitudes of the envelopes. For both sets of

A -5 -4 . ~7 -6
12 is in the range 10 ~-10 , Pl3 is 10 -10 7, and H
il

P73 is 107 -5 x 10—2 for most energies considered.

potential curves P

We performed some extra calculations to check the assumption of a
complete set of states for the second-derivative coupling term. In the standard
versions of methods A, E, and F, we use equation (35) for ga. This equation X
is also used to make Ed vanish in methods B, C, G, and H, and, as discussed
in the appendix, it is required to hold for the equivalence of method D

o the other methods. Thus it is interesting to test the sensitivity of

re-ilt  to the treatment of the second-derivative coupling.
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The correct expression for a second-derivative coupling matrix element

is
2u

a _d .a AB _ _a a
Gij(R) T Fij(a) + hz ; Fik(R) ij(R) (50)

where the sum over k should include a complete set of states. In (35),
however, the sum includes onlv the N states retained in the expansion (3)
of the wavefunction. To test the importance of this truncation in the
éeccnd term, we repeated the method-A calculations entirely neglecting
the second term. The results are given in Tables III and IV. In 27 out
of 28 cases, the difference of the results is 1% or less. In the remaining
case the difference is 5%. The present test is a very stringent one for
eq. (35). First of all, the second derivative coupling is known to be
less important in high—-energy cases where semiclassical methods are valid,22’33’34
but the present tasts are low-energy, highly quantal cases. Second, the
truncation of the sum in the second term of (50) would be expected to be
most valid for large inelastic probabilities dominated by two strongly
coupled states. But the present inelastic probabilities are very small
and do not correspond quantitatively to a simple two-state avoided crossing.lo
Thus the fact that the second term of equation (35) has only a small effect
in the present cases is very encouraging.

It should be noted that approximations to the skew-symmetric first
term of equation (35) or (50) are dangerous. 1If this term is neglected,
the calculated srobatilities ne longer sum to unitv or satisfyv microscoenic
reversibility. The second term of (35) is symmetric; thus its neglect does

not affect these properties.

C. Cross sections. Cross sections were calculated at two energies,

E = 0.06 E, and 0.10 E, .
h h

The first of these is only 0.022 eV above the
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42P threshold at E = 0.059192 Eh; thus it is a total energy typical of
those contributing to quenching of the 42P state under thermal conditions.
The second energy is 1.11 eV above the AZP threshold. The cross sections
are given in Table IV. At 0.06 Eh, the potential curves obtained by method
21 lead to 42P-+428 quenching cross section 1.9 times smaller than is
obtained by method 2H. However at 0.10 Eh’ the method 21 cross sections
are 1.3 times larger. Considering the small size of the cross sections

and the out-of-phase oscillations in the fixed-% inelastic transition prob-
abilities, the different values obtained for the cross sections are not

- 2 2 . . ‘s
too surprising. The much larger 4 P~>5"5 cross section is less sensitive

to the difference in the potential curves.

D. Potential curves and coupling terms. Figure 1 compares the new

potential curves to the experimental omes. Method 21 leads to more accurate

dissociation energies but method 2H leads to more accurate repulsive walls.
35 ..

The C-state curve shows a shoulder at R = 5-6 ag. A similar feature was

predicted in reference 7. Reference 7 shows that this shoulder results

from an avoided crossing with a state with Rydberg character.

The first-derivative coupling between the X and A states peaks at

DI

8.5 ag» and the splitting of the adiabatic energy values is a minimum at
R = 8.9 ay- The position and value of the minimum of the adiabatic splitting :
is compared quantitatively to previous calculations in Table V. The table
shows, as is also clear from Figure 1, that the present calculations slightly
overestimate the X-A splitting. However the present calculations are more
accurate than all previous calculations. There are no experimental results

available for the other avoided crossings. There is still quite a bit of

uncertainty about the splitting at the A-C avoided crossing, but the two
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calculated values for the minimum splitting of the X and C curves are in
reasonably good agreement.

The shape of the present diabatic couplings as functions of R are very
similar to those calculated previously for KH (see Figure 2 of reference 7).
The adiabatic couplings also show a reasonable similarity in shape to those

calculated previously (see Figure 17 of reference 7).

E. Semiclassical approximations. Although FiZ(R) and Iei(R) - €;(R)]
show the behavior associated with an avoided crossing at R = 8-9 ags Figure 3
shows that the diabatic potential curves do not show such a crossing. Most
previous workers have treated the X-A inelastic transition in terms of such
a hypothetical diabatic crossing, although there was already some indication
in references 3 and 7 that the usual diabatic pictures for the curve crossings
in NaH and KH might be inadequate. Nevertheless it is interesting to briefly
compare the present inelastic transition probabilities to those obtained
by the semiclassical Landau-Zener formula for estimating transition proba-
bilities at adiabatic avoided crossings resulting from diabatic crossings.

According to this formula, if the crossing occurs at R = RY' the inelastic

s-wave transition probabilitv is33’36—38

LZ

Pr5 = 20(1 - p) (51)
where

p=e" (52)

d .2
Y T S
Y= v d d /d l (53
d(Hy; - Hyp)/dR 'R=R,

and v is the local radial speed at the diabatic crossing, i.e., for an = wave.
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d b
= { - 4
A4 2(E Hll(RX)]/u} (54)
In the two-~-state approximation, assuming orthogonal diabatic states,
B, (R) = Ble2(R) - e2(R)] (55)
127X 27X 1°X

It is customary,5’6’8 for the X-A transition in alkali hydrides, to neglect

d d ~ . d \ . .
Hll and dHll/dR at R = RX and to approximate sz by (in atomic units)
Hd (R) Y 1P - EA - 1_ o (56)
22 R 2R4

where IP is the ionization potential of M, EA is the electron affinity of H,
- Py .t S .
and a is the sum of cthe polarizabilities of M and H . Putting all these

approximations together and noting that w >> 1 yields (in atomic units)

2
T\"AE(R )l
Pié = 2exp[- - X — (57)
- 2
(BE/w) "(Ry™ + 2aR, ")
We use u = 1790.83 a.u. and o = 218 a.u., and we take RX and Le(Rx) from
Table V.
In the more complete Landau-Zener-Stueckelberg theorv, the inelastic
probability becomes36’38—40
Piz = ZPLZ sinz(r + 8) (58)

where 7 is the difference in action integrals for the two adiabatic curves

and § is a phase correction:
R R
b X T L .
T = (2u/h7) Ty [E - g, R)]7dr - LE = £,(R)j Tdr; ¢

Rtpl R:pz

e}

~

U

are the classical turning points in adiabatic states 1

LZ

where Rtpl and chz

and 2 respectively. Equation (58) shows that 2P should be compared to the




upper envelope of the oscillating inelastic transition probability. This

comparison is shown in Table VI for those energies at which the close coupling

probabilities are maxima (compare Figure 5). The comparison, however, shows

that the Landau-Zener formula overestimates the inelastic transition prob-

abilities as compared to the results obtained from the close coupling cal- \

culations. The overestimates in Table VI range from a factor of 36 to a ;

factor of 60. Thus this simple high-energy model does not yield accurate

transition probabilities at the low collision energies of the present study. ;
Although the failings of the Landau~Zener theory are well known, even !

at higher energies,al both Faist and Levine42 and Andresen et 5;.43 found ;

that it works very well for the ionic-covalent crossing in alkali-halogen

collisions, even near threshold. In fact Andresen EE.él'43 concluded that

"a similar agreement is expected for all other systems which are dominated

by the interaction of a covalent and an ionic channel." By this argument

one would expect that it would be accurate for the ionic-covalent inter- '

. . . 7 . .
action leading to P In previous work, however, it has been pointed

12°

out that the strong interaction is not well localized in this case and that

this would lead tc a breakdown of the Landau~Zener method. Furthermore, {
the fact that the diabatic curves do not cross is an indication that the ;
transition is not an isolated curve crossing. A more quantitative measure
of whether this transition should be treated as a curve crossing will be j
given below.

The other inelastic transitions are more complicated. The second and

third diabatic states cross twice, and the first and third diabatic states

disaatee .. .

do not cross. Landau-Zener-type isolated-avoided-crossing treatments are

not appropriate for either of these transitions. In the absence of simple




models the full close coupling treatments reported above are the best way to

estimate the transition probabilities.

The additional factor in equation (58) results from the interference
of the two possible trajectories leading to the same inelastic collision.
This effect accounts for the existence of the oscillations in Figure 5.
Equation (53) results from a high-energy approximation, retaining only the
leading term in 1/v in the semiclassical phase integral.Aa With the same

approximation the difference in action integrals becomes
Ry
t = (/hv) [ bse(R) dr (60)
Rtp

where the classical turning points are the same to this order. Equation (60)
predicts that at high energy the oscillations should be evenly spaced in 1/v.
At the low energies of the present study, the initial and final'speeds are
appreciably different, and they differ significantly from the local radial
speeds at small r. Thus it is not possible to approximate all these speeds
by the same v and equation (60) is inapplicable. Nevertheless the regularity

in the oscillations is evident in Figure 5.

We have already mentioned that the couplings between the adiabatic curves

cannot be treated as simple avoided crossings. To put this om a more quantitative

basis we will discuss the classification of the nonadiabatic couplings. One
may distinguish two kinds of strong interaction in terms of the following

two-state representation

22GoR) = 8300 cos 8R) + 930 stnu(R) (61)

22(6R) = =350 sin 3(R) + $5(x) cos 2 (R) (62)




Using (19), (37), (61), and (62), one finds

a g - 48
£, = & (63)

One can distinguish two prototype cases. In one case, 5 changes from 0 at
R = ® to n/4 (=0.785) at small R. This occurs for a symmetric resonance
interaction like H+ + H. 1In another case 3 changes from 0 at R = « to
w/2 (=1.57) at small R. This occurs for a diabatic curve crossing. In
general one may associate a Aeij with each peak in fij(R) by integrating
over the range of strong interaction:
R2 R
28, = fR £,5(R) dR (64)
1
For actual cases, Aeij may come out somewhere between 0.785 and 1.57 for
strong interactions and may be less for weak ones. We applied this model
to the present case and the results are given in Table VII. These results
show that 6912 is not close to 1.57. Thus it is an oversimplification to
describe the 1-2 ionic-covalent interaction as a simple curve crossing,
and this helps to explain the failure of the Landau-Zener method. The
adiabats are not merely "switching" from one diabat to the other; rather
there is an appreciable "mixing" contribution. Even the 2-3 interaction,
where the diabats cross, is not a pure curve crossing. Table VII shows
that the 1-3 interaction is weak.
In order to calculate the Aeij values in Table VII, we had to separate
the overlapping contributions from two different interaction regions in
the vicinity of the sign change in f?j(R). We did this by the simplest

method, i.e., we integrated from the peak of fij(R) to R = » and multiplied

by 2. There is an even simpler wav to classify the nonadiabatic interactions
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that also avoids the question of overlapping wings of the peaks in fij(R).
Under simple assumptions in ng(R), one can show on a two-state model that
fij(R) for the symmetric resonance has the form (8/4) sech [B(R - RM)] and
for the curve cross cases it is a Lorentzian.22 These different shapes

may be characterized by defining the unitless interaction parameter:

- .a
Qij {peak value of rij(R)] x FWHM

where FWHM is the full width at half maximum of the peak. This leads to
Qij = 0.66 for the symmetric resonance case and Q1j = 1.00 for the curve
crossing cases. We also calculated Qij for the biggest peak in each

fij(R), and the results are in Table VII. This confirms that the 1-2

and 2-3 interactions involve considerable mixing (as in symmetric resonance)
as opposed to pure curve crossing. This simple method for characterizing

nonadiabatic interactions should be useful for many problems.
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VI. CONCLUDING REMARKS

This paper has been concerned with calculational techniques for the
calculation of electronically inelastic transition probabilities using
ab initio potential energy curves and nonadiabatic radial-first-derivative
couplings as input. We have demonstrated that very small transition prob-
abilities can be calculated with high precision using a convenient and
accurate method based on R matrix propagation and an exponential sector
transformation matrix.

The emphasis in this article is on the techniques for solving the
coupled-channel equations to obtain the precise values of the cross sections
that correspond to a set of ab initio potential energy curves and nonadiabatié
radial-first-derivative couplings. Several other considerations enter when

we try to obtain accurate cross sections, i.e., good agreement with experi-

ment or reliable predictions. Only two of these have been considered in
this paper, namely, sensitivity to changes in the potential curves and to
the treatment of the second-derivative nonadiabatic coupling terms. Some
other factors that must be considered in future work to obtain reliable
results for the K + H system are sensitivity to change of electronic origin

in the radial-first-derivative coupling termss* 2243

22,46

and the role of angular- .

derivative coupling terms. The latter terms couple the I states to the

[ =:ates, but we have included only I-% coupling in the present study.

Another question, also discussed elsewhere2’3'A7’AS

and also deferred to

future work for detailed numerical study, is the question of whether accurate
]

low-energy cross sections can be calculated from ab initio molecular-frame i

input data without either including plane-wave factors or transforming at

large R to a laboratory-i{rame diagonal representation in which the coupling




vanishes at infinity for any consistent choice of origin for the electronic
coordinates. If such a transformation is required, the present method

can still be used to integrate out to the large-R transformation distance.
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APPENDIX

In this appendix we discuss the fact that using (18) with an incomplete
basis is equivalent to including the full effect of the first derivative
coupling matrix {a(R), but including only part of the second derivative
coupling matrix ga(R).

First note that Q(R) defined by (30) and %(R) defined by (18) obey the
same differential equation. Note that the sign difference arises in taking
the transpose of (30) since ga(R) is skew symmetric. It has been shown else-
where3 that the matrices %(R) can be used to construct the transformation
Q(R) from the adiabatic basis to the diabatic one. Therefore, the two
problems are equivalent in the limit of small sector size and since the
transformation method, (27)-(34), includes the full effect of the ga(R)
matrix, so will the direct integrationscheme of eqs. (7)-(26).

By using the M matrices to generate the transformation to the diabatic

basis %d(R). (7) can be transformed to

1
d2 d d
—5 x (R:ii) = D(R;i) x (R;1) (A-1)
dR™ Vv ’ ~ g
where
iy = ety 12000 oy 1T ood ;
D(R;1) = Y(RL) AT(R31) U7 (RD) (A-2) {
and ;
d P - i a od -
é (R;1) = Q(Rc)z (R;1) (A-3)

In enforcing the sector matching conditions (10) and (11), the matrix T(i-1:1i)

is now replaced by the identity matrix since fd(R) is identical zero. There-
fore, solution of (A-1)-(A-3) is the same as the solution to (31) but neglecting

d ,
G (R). Since gd(R) vanishes in the limit of a complete set, this neglect

is completel: justified in the converged limit. Consider, however the case
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in which an incomplete basis of the N lowest-energy adiabatic states is
included in the coupled-channel equations. Then the terms neglected in

assuming Gij(R) obey (35) are given by

2

h
2u

<o lsxlopr<ey lied> (A=4)

Aij(R) = -

218

AB  k=N+1

Equation (35) will be a valid approximation for incomplete bases in the case
a a
ETR) + G (R »> |a(®)] (a=5)
Using a Hellman-Feynman type theorem it can be shown that

1 <«a.;Hel‘_a
SRR Y
SHGIEIECO N

. (a~6)

and therefore the conditions for the validity of (35) are

a!BHel a2
a a 52 [ 1 5R !'kn
[gi(R) + Gii(R){ >> 7 i y - a‘ =i (A=7)
AB 'k=N+1 [z (R) - S (R)]7"
i
and
3H aH
2 i © <q)af e1i¢a><ma! el;(;?,\ ;
icij(R){ 77 2 Z a - JZ « ak = Agl { (a-8)
AB |k=N+1 [Ek(R)—ei(R)][-:j(R) - e (R

Thus equation (35) is a good approximation if the omitted states lie high

enough in energy.




TABLE I. Relative computing times required to obtain 0.5% accuracy

Method Computing time

D. R matrix propagation 1.0

C. Magnus, diabatic, analytic 2wponential

B. Magnus, diabatic, exponential by power series 4
A. Magnus, adiabatic 7
G. Runge-Kutta, diabatic 16
L. Runge-XKutta, adiabatic 16
F. Adams~Moulton, adiabatic >3Oa
H. Adams-Moulton, diabatic ' >40?

2In these two cases the resulcs are still accurate to only 10-50% for
the computing times listed. Since these two methods were found to be
so inefficient, we did not continue to decrease the stepsize parameter
to obtain 0.5% accuracy.
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TABLE II. Detailed comparison of computational efficiencies of methods

Number of sectors Computing P b 9 error
or steps time 3 12 )
Method D
302 0.85 1.5646(-6)° 0.68
358 1.01 1.5617(-6) 0.49
452 1.23 1.5564(-6) 0.37
486 1.33 1.5554(-6) 0.09
520 1.43 1.5550(-6) 0.06
621 1.68 1.5543(~6) 0.02
659 1.73 1.5541(-6) 0.01
926 2.56 1.5539(-6) -0.01
2344 6.25 1.5539(-6) -0.01
4671 11.82 1.5540(-6) 0.00
Method C
453 1.52 1.5741(-6) 1.29
647 2.02 1.5628(-6) 0.57
653 2.03 1.5615(-6) 0.48
680 2.09 1.5612(-6) 0.46
1359 3.55 1.5558(-6) 0.12
1477 4.66 1.5555(-6) 0.10
4527 11.93 1.5541(-6) 0.01
13581 35.76 1.5540(-6) 0.01

Tabl.: T

a?ame scale as

bFor 2H potential curves, £ = 0.06 Eh' L=

(o4 .
Numbers in parentheses are powers of ten.
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TABLE IV. Cross sections for excitation and de-excitation processes

in K + H collisions.?

E (Eh) Zmax 919 (ag) 999 (ag) c.e 95 (aé) Tya (ag)e
21 potential curves

0.06 37 8.40(-6)d 2.08(-4)

0.10 165 1.20(-3) 9.80(-4) 2.75(-6) 0.41
2H potential curves

0.06 36 1.60(-5) 3.96(-4)

0.10 >145 9.24(-4) 7.55(=4) 1.73(-6) 0.4

a X . s
Cross sections are accurate to about 2% with respect to variations
of integration parameters.

b . . . .
Number of partial waves necessary to converge inelastic cross sections
to 5 significant figures.

c _ 2 2 . . .
Oji = (kidi/kjdj)oij where ﬁki is asymptotic momentum in channel i

and di is the degeneracy of state 1i.
dNumbers in parentheses are powers of ten.

®Includes factor of 1/3 for P-state degeneracy.
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TABLE VI. Maxima of s~wave inelastic transition probabilities

for X+ A transition.

12
E
LZ

(eV) close coupling 2P

Method 21
1.91 1.6(-5)2 8.4(-4)
2.22 3.3(-5) 1.5(-3)
2.96 8.9(-5) 4.4(=3)

Method 2H
2.00 2.8(-5) 1.0(-3)
2.34 3.2(-5) 1.9(-3)
3.11 1.4(-4) 5.2(=3)

a .
Numbers in parentheses are powers of ten.
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TABLE VII. Interaction parameters for outermost peaks in f:j(R).

R R

i i location of max £2,(r) A8,
1] 1]

(ao)
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Figure Captions

1. Adiabatic potential energy curves as a function of internuclear
distance for the three lowest lZ+ states of KH. The curves are the
results of the ab initio pseudopotential calculations as obtained by
method 2I for the solid curve and method 2H for the dashed curve.
The two asymptotic values for the C state differ because in fitting
the 2I potential curve the experimental SZS excitation energy of
2.61 eV was used, whereas for the 2H potential curve the numerically
computed value of 2.55 eV was used. This difference has a negligible
effect on the scattering calculations. The potential curves for the
B state both dissociate to the correct atomic 42P excitation energy
of 1.61 eV. The points are the experimentally determined RKR values
for the X and A potential curves (from references 7 and 10).

2. First derivative coupling terms, as defined by equations (19) and
(37), for the three lowest adiabatic lZ+ states of KH as functions

of internuclear distance. States 1, 2, and 3 correspond to the X,

A, and C states of figure 1. (Since the difference between methods
21 and 2H involves only the treatment of the core, the derivative
couplings are the same for both methods.)

3. The diagonal matrix elements Hik(R) for the 12+ states of KH in
the P-diabatic basis as functions of internuclear distance. The solid
and dashed curves are the results of transforming the corresponding
solid and dashed adiabatic curves shown in figure 1.

4. Same as figure 3 except for the off-diagonal elements H?k(R)-

5. Transition probabilities ij(E) as functions of the reciprocal

of the total energy for ¢ = 0. The zero of energy is the asvmptote

A




of the X state. The top plot is for excitation of K from the 425

to the 42P state, the lower left plot is for excitation of K from
the 428 to the 525 state, and the lower right part is for excitation
of K from the AZP to the SZS state. In the top plot the left and
right arrows along the abscissa indicate the energetic thresholds
for excitation to the 525 and 42P state, respectively. The arrows
in the lowest two plots are the threshold for the excitation to the
525 state. Note that the energy scale for the upper and licer left
plots coincide and are aligned vertically with each other, whercas
the energy scale for the lower right plot is expanded. In each plot
the solid and dashed curves are the probabilities computed using

the adiabatic potential curves and nonadiabatic couplings obtained

by methods 2I and 2H, respectively.
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KH adiabatic potential curves




KH first derivative coupling
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KH diabatic potential curves

Figure 3




KH diabatic coupling curves
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